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ABSTRACT

With the advent of ubiquitous deployment of smart devices and
the Internet of Things, data sources for machine learning inference
have increasingly moved to the edge of the network. Existing ma-
chine learning inference platforms typically assume a homogeneous
infrastructure and do not take into account the more complex and
tiered computing infrastructure that includes edge devices, local
hubs, edge datacenters, and cloud datacenters. On the other hand,
recent AutoML efforts have provided viable solutions for model
compression, pruning and quantization for heterogeneous environ-
ments; for a machine learning model, now we may easily find or
even generate a series of model variants with different tradeoffs
between accuracy and efficiency.

We design and implement JellyBean, a system for serving and op-
timizing machine learning inference workflows on heterogeneous
infrastructures. Given service-level objectives (e.g., throughput, ac-
curacy), JellyBean picks the most cost-efficient models that meet
the accuracy target and decides how to deploy them across different
tiers of infrastructures. Evaluations show that JellyBean reduces
the total serving cost of visual question answering by up to 58%
and vehicle tracking from the NVIDIA AI City Challenge by up to
36%, compared with state-of-the-art model selection and worker
assignment solutions. JellyBean also outperforms prior ML serving
systems (e.g., Spark on the cloud) up to 5x in serving costs.
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1 INTRODUCTION

There is a growing complexity in machine learning (ML) inference
workloads both in terms of the workloads themselves as well as
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Figure 1: An example ML workflow of Visual Query Answering (VQA)

on heterogeneous infrastructures. Execution plans vary by model

selection and worker assignment for each operator (in the boxes)

and result in different serving costs, i.e., compute and network.

the computing and networking infrastructures. These workloads
often involve multiple ML operators that together form a larger ML
workflow'; each can be a directed acyclic graph (DAG) of ML or
relational operators. For each ML operator, there are often choices
of models (e.g., YOLO [55], Faster R-CNN [56]) or the same model
architectures with different hyperparameters (e.g., number of layers,
neural network size, choice of activation functions); inputs to the
ML workflows are often collected by sensors deployed at the edge,
including video cameras and an ever-expanding array of Internet-
of-Things (IoT) devices. These devices may have varying on-board
compute [11] and are connected to more powerful edge-local and
cloud computing services over the network.

Example. Consider the visual question answering (VQA) workflow
in Figure 1 for the query “Who is at the front door?”. The workflow
uses multiple ML models for feature extraction and model inference.
The infrastructure includes edge devices (e.g., cameras) as well
as cloud datacenters. To deploy ML workflows on heterogeneous
infrastructures, the following decisions must be made:

o Model selection. With advances of AutoML and model compres-
sion techniques (e.g., pruning, quantization [30, 59]), each ML
operator in the workflow! can use various structures or hyper-
parameters; e.g., the speech recognition operator in Figure 1

'Workflows are generated using a standard parser [33] or a natural language inter-
face [36], which are orthogonal to this paper. See §3 for more details.
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may use the base variant for a faster execution or large for a
better accuracy. To provide a viable accuracy-efficiency tradeoff,
picking individual models in the workflow is non-trivial.

o Worker assignment. Each operator must be assigned to a worker
for execution. Figure 1 demonstrates two execution plans - plac-
ing compute near the data source to reduce communication, or
moving them to the cloud to take advantage of more powerful
(and likely cheaper) compute resources. Choosing an appropri-
ate plan depends on resource availability and costs.

Goals, challenges, and prior solutions. Given the ML workflow,
resource availability, input throughput, and target accuracy, we
aim to optimize the total serving costs that consist of both compute
and networking. It is easy to see that model selection and worker
assignment formulate a complex search space.

Current ML serving platforms such as Ray [47], Clipper [21], Py-
Torch [52], and Spark [65] focused on homogeneous infrastructures
(namely cloud datacenter environments). Unfortunately, ignoring
resource heterogeneity (e.g., compute, network) often leads to sub-
optimal deployments and even feasibility issues given the infrastruc-
ture constraints (e.g., on links shared among many high data rate
sensors like video cameras). Some prior systems solve this problem
in an ad-hoc manner for specific ML workflows, individual models,
and fixed infrastructure configurations [12, 21, 32, 38, 52, 57, 60, 66].
Chameleon [32] considers video analytics with one model on a
single GPU; Nexus [60] considers workflows on a homogeneous
GPU cluster with no model choices. To our best knowledge, there is
currently no off-the-shelf system that optimizes the deployments of
ML workflows on heterogeneous infrastructures. As a result, users
often manually determine how to best deploy ML workflows.

JellyBean ideas and approaches. We address some initial problems
for optimizing ML workflows on heterogeneous infrastructures,
and propose a system JellyBean. Given an ML workflow and spec-
ifications of the infrastructures, the JellyBean optimizer quickly
finds a cost-efficient execution plan with model choices and worker
assignments using the following insights:

First, we formulate the problem within a cost-based optimiza-
tion [17], minimizing the compute and network costs while meeting
the input throughput and accuracy constraints. However, optimiz-
ing ML workflows poses novel challenges. In the above example,
even though we can profile the accuracy and cost for every single
model, understanding how different models interact for estimating
the overall query accuracy is non-trivial. We leverage a simple but
effective model profiling strategy that relies on sampled measure-
ments of interactions between models to estimate query accuracy.

Next, simultaneously solving for optimal model choices and
worker assignment is NP-hard and results in an exponentially large
search space. We reduce the search space and provide a fast query
optimization by (1) making two simplifying assumptions that hold
for many real-world scenarios, and (2) identifying key parts that
are amenable to greedy approaches. Our evaluations in §6 show
the efficacy in practice.

Lastly, to serve and optimize ML workflows on heterogeneous
infrastructures, a flexible runtime is critical such that the optimizer
may explore plans in which models are placed in different workers and
locations. Due to the lack of an existing system to support this, we
implemented the JellyBean processor upon Naiad [48] and Timely
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Figure 2: NVIDIA AI City Challenge for Vehicle Tracking. Some pair-
wise operators are omitted for simplicity.

Dataflow [1], modifying them to enable operator-level parallelism
- each worker may handle a subset of the overall workflow. Such
a processor and optimizer decide where to run what; for how to
execute each individual operator, we use a containerized runtime
with virtualization and ML compiler techniques [10, 18] such that
JellyBean can cope with the infrastructure heterogeneity.

We performed experiments on various real-world use cases, in-
cluding the Nvidia AI City Challenge [3] and Visual Question An-
swering (VQA) [13]. Compared with running the ML workflows (1)
with all data pushing to the cloud, (2) with all computations stay-
ing on the edge, and (3) with optimizations carried out by several
worker assignment heuristics, better assigning different parts of
the workload to different infrastructure is significantly more effec-
tive. We also compared with a few recent ML serving platforms
and found that JellyBean is significantly better to achieve the user-
specified query-level goal. JellyBean achieves close to equivalent
performance compared with an exhaustive brute force search on a
small-scale experiment and can still generate efficient physical plans
when brute force is infeasible on larger-scale experiments. JellyBean
can reduce the total serving cost for VQA by up to 58.1%, and for
vehicle tracking in AICity by up to 36.3% compared to the best base-
lines. JellyBean also outperforms prior ML serving systems (e.g.,
Spark on the cloud) up to 5x in total serving costs. We have open
sourced our prototype: https://github.com/libertyeagle/JellyBean.

Contributions of this paper can be summarized as follow:

o The JellyBean optimizer to derive highly effective execution
plans for complex ML workflows on heterogeneous infrastruc-
tures given the infrastructure constraints and model choices.

o A flexible JellyBean processor based on a graph dataflow to ex-
ecute the optimized plans and enable operator-level parallelism
on heterogeneous infrastructures.

e Evaluations on real datasets show significant performance im-
provements over state-of-the-art ML serving platforms as well
as running the workflows using heuristics.

2 BACKGROUND

We discuss some popular ML workflows, followed by the challenges
of running them across heterogeneous infrastructures.

ML Workflows There are many other use cases of ML queries for
intelligent Internet of Things (IoT). In addition to the VQA query
introduced above, we name a few interesting scenarios for instance:

o NVIDIA AI City challenge: Tracking vehicles across neighbor-
ing intersections is an important ML query that allows people
to understand and improve transportation efficiency [3]. The
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Figure 3: Deploying ML workflows on heterogeneous infrastructure
requires designing physical plans for different partitions.

workflow is shown in Figure 2 with video inputs from multi-
ple cameras of neighboring traffic intersections. It first detects
objects on each individual video stream, and then performs an
object re-identification (ReID) step to extract key features per
detected car. A tracking module is used to find car traces in
each video stream, followed by a clustering module to trace
cars across different video streams.

o Wearable health: detecting anomalous heart signals.

o Personal assistant: answering complex human voice commands
using Internet data.

One common characteristic is that they all rely on a set of loosely-
coupled operators (i.e., operators that do not share global states but
only depend on prior outputs), each of which uses an ML model or
a traditional data processing module; e.g., a model to tokenize the
text or relational operators such as reduce and join [16, 44]. The
output of a previous operator is the input of the next, therefore
formulating a workflow or logic plan in directed acyclic compute
graph (DAG). Breaking down an ML query into workflows that
consist of independent operators has been highly leveraged in
prior research and production [43, 60]. Doing so promotes the
reuse of trained models and operators to ease the development of
the serving system as well as to boost performance due to shared
computations [15, 37, 42, 63]; each module also can be improved
independently to accelerate the application development.

Serving ML on Heterogeneous Infrastructures. The above ex-
amples also show that many application scenarios have input data
injected from edge devices. To deploy ML workflows upon these
inputs, one way is to put them in cloud datacenters. Clearly, this
can often be suboptimal since raw inputs (e.g., images and videos)
can be large and data movement can be costly.

Moving compute to near the data source is a well-known tech-
nique in the big-data systems literature and has been proven to be
effective in many use cases [29, 54]. However, today developers still
have to hard code or manually tune the physical execution plans for
each ML workflow depending on the amount of resources on the
edge and costs of various types of resources [32, 35, 46]. We believe
this manual approach cannot scale with the rapid development of
edge data centers and IoT devices.

Figure 3 shows a cloud with three regional datacenters, several
local hubs, and edge compute devices. A different execution plan
is needed for each partition. For example, different local hubs can
have different numbers and types of workers. The cost of running
models at different locations can also be different, depending on the
cloud region and the resource availability at local hubs. We use the
term partition to denote the tiered infrastructure where different
locations within a tier have similar resources. If a partition contains
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Table 1: Comparing current ML systems. MS: model selection. WA:
worker assignment.

System Parallelism MSQOW A Usage \I;I/zt:]::fen;tf}r}a.
PyTorch [52] Data X X Both X X
TF [12] Data X X Both X X
Spark [65] Data X X Infer X X
Clipper [21] Data X X Infer X X
Ray [47] Data, Model | X X Both X X
Optasia [42] Data, Op X v Infer X X
Pathways [14] Data, Model | X X Train v X
Llama [58] Data, Op X v Infer v X
Scrooge [27] Data, Op X v Infer v X
JellyBean (Ours) ‘ Data, Op ‘ v v ‘ Infer ‘ v v

multiple local hubs, they must have similar worker configurations.
JellyBean can be used to generate a physical plan per partition.

ML Serving Systems. In order to partially move the ML workflow
to the edge devices, besides being able to break it into modules or
operators, another necessary condition is a serving system that sup-
ports operator-level parallelism on heterogeneous infrastructures.
Prior ML systems focused on data, model (i.e., breaking large DNNs
into operators) and operator (i.e., breaking workflows into opera-
tors) parallelism on homogeneous infrastructures [21, 42, 47, 52],
or on heterogeneous workers within a datacenter [14, 27, 58]. We
present a qualitative comparison in Table 1. Recently, Google’s
Pathways [14] has started to investigate operator-level parallelism
for training large deep neural networks with hybrid cloud infras-
tructures of CPUs, GPUs, and TPUs. There still lacks an off-the-
shelf system for serving and optimizing ML workflows with model
choices on heterogeneous and especially IoT infrastructures. We
provide a more detailed comparison with related systems in §8.

3 OVERVIEW
We discuss our JellyBean design and scope in this section.

System scope. JellyBean aims at serving and optimizing ML infer-
ence workloads that can be decomposed into multiple operators
deployed on heterogeneous infrastructures. We target infrastruc-
tures that exhibit resource heterogeneity across tiers and resource
homogeneity within a tier. JellyBean operates over an infrastruc-
ture configuration that describes a single partition of a potentially
larger infrastructure. The optimization takes into account input
throughput, resource cost, availability and efficiency, and targets
scenarios in which compute and communication are important
factors in the total serving cost. The JellyBean processor provides
a flexible runtime and decouples resource heterogeneity using a
containerized runtime with virtualization and ML compilers, hence
targeting a wide spectrum of edge and cloud devices.

System overview. In Figure 4, we present an overview of our

JellyBean system architecture and the workflow for processing an

ML workflow. There are two main components: the query optimizer

(QO) and the query processor (QP). The query optimizer generates

an execution plan for the ML workflow, while the query processor

runs the execution plan across heterogeneous infrastructure.
JellyBean takes the following inputs:



User specifies
throughput and

User specifies worker
configurations for each tier

User provides graph of logical
plan, describing ML operators

QO transforms the workflow to low-level operators,
with explicit model choices and mappings to workers
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throughput and accuracy
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Figure 4: Overview of the JellyBean architecture. There are three main components: Profiler, Query Optimizer (QO), and Query Processor (QP).

e Workflow. Each input workflow is a directed acyclic graph
(DAG) with compute operators on the nodes and input-output
relationships between operators on the edges. The operators
can be ML models or relational operations. Declarative queries
can be parsed into workflows [33, 36] as is done in [34, 43].
Model choices for each ML operator. Each ML operator may
use different models with the same semantics but different
structures or hyperparameters. These models have different
accuracy and cost profiles. JellyBean may profile these models
offline if necessary.

Infrastructure specifications. We consider infrastructures that
consist of heterogeneous resources (i.e., compute, storage and
networking) in multiple tiers - each tier is a group of efficiently
interconnected resources that share common specifications.
Input throughput and target accuracy. Users provide a target
accuracy on the query output; meanwhile, JellyBean must keep
up with the input throughput. The target accuracy restricts the
model selection to generate a low-cost physical plan.

Our query optimizer generates the physical plan in two steps.
First, it selects models that satisfy the target accuracy with the least
costs (§4.2). Here we do not have worker assignments yet, so the
exact costs of deploying the selected models are unknown. We ap-
proximate the costs based on the characteristics of the models (e.g.,
model sizes, the latency of inference on a standard CPU/GPU) and
use beam search to select the best K configurations. Each configu-
ration includes the model selection for all models in the workflow.

The second step is to determine the worker assignment (§4.3). We
again use a beam search method. We progressively determine the
worker assignment by choosing a set of workers for each operator
to achieve the lowest compute and networking costs. More than
one worker may be assigned to an operator to consolidate the
costs. The best worker assignment is derived then for each of the
K configurations and choose the best physical execution plan for
both model selections and worker assignment.

The JellyBean processor is a distributed query processing engine
upon Naiad [48] and Timely dataflow [1] to provide a low-overhead
dataflow abstraction. However, Naiad and Timely Dataflow use a
homogeneous datacenter setup with data parallelism only JellyBean
augmented their codebase to incorporate operator-level parallelism,
allowing different workers to run different portions of the workflow.
Each worker leverages a containerized runtime with virtualization
or ML compilers [2, 18] to offset heterogeneity (§5).
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Table 2: Set of common notations used in our description.

Definition

Graph of logical plan (G = (V, E,M, m))
Vertices V, Edges E, Models M
Model Choices m : V. — P (M)

1 Set of infrastructure tiers

Notation

G

User Input

W, w; Set of workers overall [or for tier i € I]
Cg Worker-to-worker communication cost (Cp : WxW — ﬁ)
T, T, Input throughput overall [or for node v € V]
A Target overall accuracy
b Ce Unit compute cost for model on worker (Cc : MxW — §$)
g ty Throughput for model u on worker w
& r Unit input size at 0 from u (r : VxV — byte)
o s Model selection (s : V. — M)
e4 a Worker assignment (a: V — P(W))

4 QUERY OPTIMIZER
4.1 Problem formulation

We consider our infrastructure to be composed of a number of work-
ers with diverse computing capability distributed across multiple
tiers (e.g., edge, hub, and cloud). Data sources are located on the
lowest tier (i.e., W;), often with some limited compute resources.
Workers on higher tiers tend to have more computing capability
but are far away from the data sources. We assume a set of workers
W, which are partitioned into || tiers.

Let the input of our optimizer be a logical plan graph G in which
each node v € V corresponds to an ML or regular relational op-
erator. For each ML operator, the user specifies a list of candidate
models m(v), each having a different accuracy and runtime perfor-
mance. These models can be developed independently or can be
variants of other well-known models through quantization [22, 30],
distillation [24], and pruning [41, 59]. §7 discusses techniques to
generate a diverse set of model choices. A model’s accuracy and
performance can be either provided by the user or profiled by Jelly-
Bean. We use s(v) to denote the model choice for v. Meanwhile,
we assign for each logical operator v a list of workers a(v) in the
heterogeneous infrastructure. The infrastructure specification con-
tains sets of each type of worker a tier has, the cost of each type
of worker, and the communication costs between different tiers.
Note here our formulation only considers a single partition. This
is because each partition (shown in Figure 3) requires a different
physical execution plan. Table 2 illustrates the notations used in
this paper as well as inputs to our query optimizer. Note that the



compute and communication costs here as unit monetary costs; the
former is the hourly price per worker, and the latter is based on
network traffic (i.e., data movement on the DAG edges).

We aim to solve worker assignment? a : V — P (W) and model
selection s : V. — M simultaneously, such that the overall query
accuracy (acc) is beyond a user-specified target A, and that the
system’s throughput (tgjff“’) at the output node v,y;) is no less
than a target T. We describe our target cost function and our query
optimization as:

argngisn Z Z Ce(s(v),w) + (1)

veV wea(v)
Z Cg(wy, wy)R(u,0)
(u,0)€E (wy,wy) €
a(u)xa(v)

s.t. acc > A, tg;j;’“’) >T,

where R(u,v) denotes the consumed network bandwidth from u
to v. The formulation above minimizes the ML workflow’s com-
bined compute (first term) and networking (second term) costs and
is NP-hard, because the sub-problem of solving only the worker
assignment is already a combinatorial optimization that can be
reduced to a binary knapsack problem (which is NP-complete [23]).

Assumptions. We make two assumptions in our optimization to
reduce the problem complexity without losing generality, as these
assumptions hold for many realistic use cases:

e Al: We assume that communication costs Cg(w1, wp) to have
the following properties: 1) set to 0 if wy and wy are on the same
infrastructure tier and are in the same location, 2) otherwise
set to a positive value. This is common in many use cases, as
workers in the same tier either do not inter-communicate (e.g.,
among edge devices at different locations) or use high-speed net-
working (e.g., among datacenter nodes) with negligible costs.

o A2: We assume that all workers only communicate with peers
in the same infrastructure tier or any higher tier, thus making
information flow in one direction®. This assumption implies
that for all edges (u,v) € E, the set of workers a(v) are all on
tiers greater than or equal to the highest tier of any worker
in a(u). This is reflected in Cg by values of +co for pairs of
workers that violate this one-way flow assumption.

Model Profiling. JellyBean needs to understand the impact of
selecting different models on accuracy and throughput in order to
meet the constraints specified by the user for the overall workflow.
While users can optionally specify the accuracy and performance
of models for different infrastructure workers, JellyBean supports
automatic profiling using validation datasets provided by the user.
If a worker cannot run a particular model (e.g., model requires a
GPU but the worker is CPU-only), we set both the accuracy and
the throughput to be zero. Otherwise, JellyBean measures the run-
time performance in terms of the throughput for the model on
every worker type in the infrastructure. Note that we use the mean

2We note that assigning for each operator a list of workers is equivalent to picking the
model to execute for each worker.

3We note that the final result from the workflow may be transferred back to the lowest
tier (e.g., user’s device), but we do not model this.
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throughput of each model (and thus compute cost) relative to the
input throughput during cost calculation, since operators in ML
workflows may have different output-to-input ratios. For model
accuracy, we need to understand the accuracy response of a model
with respect to the accuracy of upstream models whose outputs
are fed into it. JellyBean varies the input accuracy by selecting
different upstream models (with different accuracy profiles) and
measures the output accuracy response of the model under test.
For example, consider a model with two inputs and exhibits the
following accuracy profile: (60%, 50%) — 55%, (50%, 60%) — 60%,
(70%,90%) — 65%. This profile enables us to conservatively es-
timate the output accuracy by identifying the row that is closest
to (but not higher than) the accuracy of all inputs; for example, if
the input accuracy is (55%, 83%), then we can conclude the output
accuracy is at least 60%. One assumption we make here is that the
output accuracy is monotonically increasing with respect to each
input accuracy (with the others fixed). In §4.2, we demonstrate how
we use the accuracy profile to select models that satisfy the user’s
target end accuracy.

Next, we describe our solution that finds highly effective execu-
tion plans as well as components to derive query-level accuracy
and, assign workers across the heterogeneous infrastructure.

4.2 Model Selection

Model selection balances the inference cost and model accuracy:

Satisfying Accuracy Constraints. One challenge in our model
selection is to estimate the query-level accuracy given profiles of
individual ML models, which can be non-trivial due to the depen-
dencies among them. So far, this has not been discussed in any prior
work, and we propose a solution here as follows.

We consider the dependency graph of the ML operators in the
logical plan G. For each operator, we can assign (choose) a model
variant; the final accuracy for the model selections s should satisfy
a user specified accuracy threshold A. We use the model profiles
to determine whether a model configuration satisfy the accuracy
constraint. In each model’s accuracy profile, we need to choose
a row such that the output accuracy of a model is larger than a
downstream node’s required input accuracy. Also, the final output
model’s accuracy has to be above the target end-to-end accuracy.

Reducing the Total Cost. Another problem during model selec-
tion is that we do not know worker assignments yet and thus we
cannot use a concrete cost. Thus, we need to choose models based
on a different cost definition. We can use the execution latency on
a single GPU or the number of parameters in the model. In our
current prototype, we use a simple notion of cost: the latency for
model inference on the most powerful infrastructure worker (e.g.,
NVIDIA V100 GPU in our evaluation).

We use the accuracy profiles and perform a beam-search to find
the model assignments that can attain user’s specified end-to-end
accuracy threshold. We traverse the graph in reverse topological
order, and assign the model for each node. Each candidate is a
combination of partial model assignment and the accuracy require-
ments for upstream nodes. Specifically, we first extract the accuracy
requirement for a node that we are currently assigning, and then



iterate through all the candidate models for the node and find mod-
els whose output accuracy is greater than the threshold from the
downstream models. When there are multiple models satisfying
the output accuracy, we pick the ones that have the lowest cost.
There can be many model configurations that satisfy the accuracy
constraint, and we maintain the best By;s number of model config-
urations based on their costs. After one model selection is found
for this node, we then update the model assignment to propagate
the accuracy constraints to upstream nodes until all nodes have a
model assignment. We have to maintain more than a single candi-
date model configuration because our cost estimation can be not
accurate. The real cost should be the actual cost of deploying this
model on a particular worker type in the edge or cloud; here we
simply use the latency or model size as the cost.

4.3 Worker Assignment

The goal here is to take the set of candidate model selections from
the previous step and determine the best mapping from models
to available infrastructure workers that minimizes the overall cost
while meeting the input throughput to our system. We will first
present an overview of our worker assignment algorithm, which
makes greedy choices along two dimensions to reduce the large
search space for worker assignment: 1) the order of assigning nodes
v € V to workers, and 2) the workers w € W to be assigned. Next,
we will describe our approach for determining the per-input cost of
assigning the execution of a model to a given worker, which enables
our greedy selection of workers. We also discuss key refinements
that improve optimality in practice.

Computing Assignments. We present our solution in Algorithm 1.
We consider as input a specific candidate model selection (out of
the top-K candidates produced by the previous phase). The output
consists of a mapping between nodes in the logical graph and sets
of available workers.

In Line 2, we start by iterating over each node v € V, using a
topological ordering such that parent nodes are assigned before
their downstream child nodes. While an optimal solution would
need to consider the assignment of all nodes jointly, this is com-
putationally intractable. However, due to the nature of realistic
workflows and our assumption A2 that limits communication in
one direction between tiers (i.e., from lower to higher), greedily
computing worker assignments based on the topological ordering
is a reasonable approximation. For any particular V and E, there
may be many valid topological orderings; therefore, we extend
our approach to also iterate over a constant number of different,
randomly-selected topological orderings to improve the optimality.

For a given node v, we need to assign a set of workers to execute
ML operator (or task), such that we limit the cost while meeting the
input throughput. Each worker can be assigned to a node v*, and
such assignments formulate a combinatorial optimization which is
NP-hard [23].

We use a greedy approximation for worker assignment by con-
sidering the cost of assigning a worker w to handle the execution of
node v (with the assignment cost defined at the end of this section).
We assign workers based on availability (i.e., not already assigned)

4We use one-to-one mapping due to the low overhead of our processor. See §5 and §7.
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Algorithm 1: Worker assignment.

Input :Model selections: V — M
Output: Worker assignment a : V. — P (W)

Function Avail(W, a, i) — Returns unassigned workers in tier > i
Function MinCost(W, s, v) — Returns worker with min cost (Eq 2)
Function TCoeff(w) — Returns throughput coefficient based on tier

Function Top(a, k) — Returns top-k best assignments in set

1 ag = {@} // Current set of assignments in beam

2 for v € Topo(V) do

3 ajg = {} // Next set of assignments in beam

4 for a € ap // Iterates over current set of assignments in beam

do
5 fori e Ido
6 Trem = Ty, Gcur = ap
Greedily assign workers up to throughput req.

7 while Ty, > 0 and |Avail(W, acyr,i)| > 0 do

8 acur[v] U= MinCost(Avail(W, acyr, i), s, 0)

9 Trem —= (2" X TCoeff(w))

10 if Tyem < 0 then a;; = a}a U {acur}
11 ap = Top(ap, Bwa) // Keep only top assignments in beam

12 a =Top(ag, 1)

and ordering from lowest to highest cost until the input throughput
is met, or until we run out of workers to assign (Lines 7-9). Given
our assumption of one-way communication between infrastructure
tiers (A2), if a node u is greedily assigned to a worker on a higher-
tier, then all nodes v € V, where there exists an edge from u to v, are
unable to be placed on lower tiers. We modify this by computing
the greedy assignment over expanding pools of available workers,
where the number of pools is equal to the number of tiers |I| and
the ith pool contains all workers in the i tier or lower. We use a
beam search to reduce the search space by keeping the best By 4
candidate assignments (i.e., those with the lowest cost) out of the
By all| considered at each step (Line 11).

Since each tier may be distributed among one or more locations,
we cannot simply consider the remaining throughput based on that
achieved by a candidate worker w for node u (i.e., t;’). Instead, we
need to multiply this by the TCoeff(w), which computes the factor
based on the number of locations from the tier of w up to the root
of the partition (e.g., cloud tier). Consider an example infrastructure
that consists of the cloud, hub (2 locations), and edge (5 locations);
TCoeff(.) is 1, 2, and 10 for workers on the cloud, hub, and edge
(respectively).

Assignment Cost. To greedily pick workers with minimal unit (or
per-input) cost, we need to take both computation and communi-
cation costs into account. Considering the cost for anodev € V,
with model selection s, running on a worker w, our overall cost
equation is:

ty

Ce(s(v),w) + Z Z Cg(x,w) ('ITu) r(u,v), (2)

(u,0)€E x€a(u)

containing the unit cost for computation (first term) and communi-
cation (second term). s(v) is the selected model out of all choices for
node v, and the unit computation cost is derived from the profiler



using the cost of each worker and the throughput of the worker
while executing the selected model.

For the unit communication cost, we leverage all previous as-
signed nodes u € V that have edges to the current node v. Hence,
the second term involves summing the costs across all workers
assigned to u (i.e., x € a(u)) and the worker w that is being con-
sidered. Note that we only consider the parents of v and not it’s
children, since our greedy algorithm operates in the topological
ordering of the nodes, such that the assignments a(u) for all child
nodes u are already known. If w;, and w are on the same tier, the
communication cost between the workers will be zero (Al); other-
wise, there is some bandwidth-based cost for the traffic between the
infrastructure tiers for x and w. This bandwidth cost is multiplied
by the amount of communication for wy,, which is based on the unit
input size r(u, v) and the fraction of that input which is handled by
x. The fraction of input is equivalent to the ratio of the throughput
for u on x compared to the input throughput T;,. For instance, a
node v takes inputs from u that is assigned to an edge worker x;
(40% inputs) and a cloud worker x; (60% inputs). If we assign a
worker at the cloud, the communication cost has to include the
split linkages. The term t;; /T, is the fraction of the u — v traffic
contributed from x.

5 QUERY PROCESSOR

We prototype JellyBean upon Naiad [48] and Timely Dataflow [1]
code base, which offered a low-overhead dataflow abstraction. How-
ever, there are additional features that JellyBean requires. We out-
line the challenges and our implementations in the following.

Operator-level parallelism. Timely Dataflow is designed for data
parallelism. Instead, JellyBean aims for operator-level parallelism,
spanning the workflow and compute nodes across different work-
ers; hence they can execute different portions of the plan. The
challenges here are two-fold: (1) all workers in Timely Dataflow
must execute the same set of operators with different data inputs;
(2) Timely Dataflow uses all-to-all communications for progress
tracking, causing unnecessary overhead.

In the prior sections, we described our optimizer to assign work-
ers to operators, where each worker is responsible for one operator
in the graph. Indeed, executions of pipelines or workers that are
assigned with multiple nodes are used in production database sys-
tems [50]. Our solution is simple but effective; as our experiments
will show, we may put multiple workers on a single device, since
the compute and network overhead of our processor is low.

Therefore, each worker only acquires its input data from up-
stream workers and sends its outputs to the downstream workers.
We build a relay mechanism to serve as a "broker" between adjacent
workers. There can be one or more relays in each worker; each
receives input data from the relay nodes in the upstream workers.
It also collects the outputs and sends them to the relay nodes in the
downstream worker. To implement this, we use a thread for each up-
stream worker that keeps pulling data from the upstream worker’s
relays through TCP streams and maintaining proper buffers. There
is also a thread for each downstream worker that pulls output data
and sends it to the relays of the downstream workers. In such a
manner, operator-level parallelism is achieved by properly paral-
lelizing independent workers (which can be on the same device),
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Table 3: Some AICity models/operators used in our experiments.

Model #Parameters (Millions)
resnet 18 34 50 101 152
Object Re-identification  11.7  21.8 256 445 60.2
YOLO v5n vss vbm v51 v5x
Object Detection 1.9 7.2 212 465 86.7
wav2vec2 base large
Speech Recognition 944 3155

tracking their progress, and syncing by treating each worker in our
compute graph as a Naiad node. Lastly, we modified the progress
tracking algorithm to support node-to-node progress updates.

Networking protocols. Timely Dataflow supports communica-
tion among the worker nodes only by relaying on the master node;
this results in unnecessary data movements. We augment the net-
working protocols to enable peer-to-peer communications among
the workers; a low networking overhead is essential in a dataflow
engine that supports operator-level parallelism.

Containerized worker runtime. Timely Dataflow supports ho-
mogeneous runtimes only. To offset runtime and hardware hetero-
geneity in JellyBean, each compute node deploys a containerized
runtime with a Linux virtual machine to hold one or more Naiad
workers. Table 3 illustrates part of the operators and models used
in our experiments; each may contain a feature extraction or classi-
fication model. Within each container, JellyBean optionally applies
ML compilers [2, 18] to adapt the model assigned by the QO to the
worker hardware. By default, the ML models are implemented in
PyTorch within the Naiad map functions.

Relational operators support. Timely Dataflow did not support
relational operators including filters, join and group-by-aggregation
upon columnar inputs. We hence implement these operators in
JellyBean. The metadata is packaged with the data being transmitted
in-between the workers to facilitate relational operations.

Remark. The runtime backend of our prototype consists of 12K
lines of new Rust code beyond the Timely Dataflow v0.12. While our
query optimizer is independent to the runtime engine, supporting
broader runtime backends can be interesting future work.

6 EVALUATION

We evaluate JellyBean against state-of-the-art techniques for ma-
chine learning model serving with the following goals.

G1 Is it beneficial to use JellyBean for serving ML inference work-
loads on heterogeneous infrastructures? We showcase end-to-
end accuracy and cost measurements comparing with relative
systems on two real-world use cases.

G2 We measure the effectiveness and cost overhead of the JellyBean
processor on various cloud and physical runtime.

G3 To show that our optimizer is near optimal, we tease apart
the usefulness of various aspects of the JellyBean optimizer
in an ablation study and compare with alternative ML model
selection and placement strategies as well as lower bounds.

G4 We study the robustness and flexibility of JellyBean in a sensi-
tivity analysis by varying the systems and workload settings.



Table 4: Four workload and infrastructure setups. We use m X n to denote that there exists m servers, each has n vCPUs. We show here the
input throughput in frame/request per second (FPS/RPS); we use the mean per-frame/audio size from the input dataset in our cost model.

Dataset VQA AICity

Setups Objectives { Infras Objectives { Infras

small: Accuracy: 0.55, Edge: 1x4, 1x8, 1x16, Accuracy: 0.65, Edge: 1x4, 1x8, Hub: 1x16, 1xV100,

(5 nodes) Throughput: 9 rps. Cloud: 2xV100. Throughput: 3.5 fps. Cloud: 1xV100.

medium: Accuracy: 0.56, Edge: 1x2, 1x4, 2x8, 1x16, Accuracy: 0.70, Edge: 1x2, 1x4, 1x8, Hub: 1x8, 1x16, 1xV100,
(9 nodes) | Throughput: 40 rps. Cloud: 1x48, 3xV100. Throughput: 8 fps. Cloud: 1x48, 2xV100.

large: Accuracy: 0.56 Edge: 2x2, 6x4, 1xV100, Accuracy: 0.70 Edge: 2x2, 2x4, Hub: 4x4, 2xV100,
(15 nodes) | Throughput: 60 rps Cloud: 3x8, 3xV100. Throughput: 11 fps Cloud: 3x8, 2xV100.

xlarge: Accuracy: 0.57 Edge: 6x2, 10x4, 2xV100 Accuracy: 0.75 Edge: 6x2, 3x4, 1xV100, Hub: 8x4, 2x8, 2xV100,
(30 nodes) | Throughput: 100 rps | Cloud: 2x4, 6x8, 4xV100 | Throughput: 20 fps Cloud: 1x4, 4x8, 3xV100.

6.1 Experiment Setup

Datasets. We consider two realistic machine learning workflows
(and associated datasets) for model inference:

NVIDIA AI City Challenge (AICity) [3] is a public dataset and bench-
mark to evaluate tracking of vehicles across multiple cameras. The
dataset is divided into 6 traffic intersection scenarios in a mid-sized
US city, which in total contains 3.58 hours of videos collected from
46 cameras. A frame has 1.1MP (megapixels) and 22 objects (cars)
on average. The ReID models are trained on the CityFlowV2-ReID
dataset [61], while the object detection models are pre-trained on
the COCO image dataset [39]. We leverage their testing scenario in
our system evaluations. Figure 2 demonstrates a typical workflow
upon this dataset with an object detection model, an object Re-
identification (ReID) model and the subsequent tracking modules
to derive cross-camera vehicle trajectories.

Visual Question Answering (VQA) [13] is another public dataset
containing open-ended questions about images from the COCO
image dataset [39]. The task is to generate an answer (from a large
set of candidate responses) for an image-question pair. This dataset
has 614,163 questions on 204,721 images. The mean input image
resolution is 0.3MP and the mean input speech length is 1.5sec.
The validation set from the original dataset split is used in our
evaluation. Figure 1 demonstrates a typical workflow for VQA.

In our offline profiling, we measure the accuracy of 10 model
combinations on the VQA validation set with 121,512 samples,
taking 10-20 minutes depending on the model combinations. As
for AI City, where test labels are not available, we use the official
benchmarking API [3] to get the IDF1 scores. We profile 20 model
combinations, and the profiling takes 1-2 hours depending on the
model combinations. We also use reported accuracy on standard
benchmarks whenever available [5, 6, 8]. We note that these are
one-time, per-database costs and can be amortized among different
ML workflows later on. We use P75 efficiency numbers as input to
our optimizer to offset runtime variance; our sensitivity analysis
in §6.4 discusses using other percentiles.

Workload and infrastructure settings. We conduct our exper-
iments on the IBM cloud where the workload and infrastructure
setups are detailed in Table 4. We evaluate four setups ranging from
small to xlarge by varying the number and type of available
workers for each infrastructure tier as well as the throughput and
accuracy targets. Each compute node represents a virtual machine
as described in §5 with the number of vCPUs specified (2-48), while
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each GPU compute node represents a VM with a 16GB NVIDIA
V100 GPU. The memory of each node ranges from 4GB to 192GB
and the bandwidth ranges from 3Gbps to 25Gbps. In §6.4, we show
experiments when the bandwidth is limited. While the absolute
infrastructure tier configurations may not capture all real-world
infrastructure setups (e.g., [oT devices with compute <2 vCPUs),
we note that the relative compute power difference between tiers
does capture this. Using these settings strengths our evaluations as
our processor offsets hardware heterogeneity by virtualization and
ML compilers (§5).

We strive to echo real-world scenarios when setting up the base
resource costs in our experiments; nevertheless, there can be or-
thogonal factors such as dynamic pricing models [26]. Hence, we
use the unit compute and networking costs based on the pricing cat-
alog of the IBM Cloud as of April 2022 [7]. The unit costs increases
sub-linearly along with the resources used (e.g., 1 and 1.5 unit costs
for 2 and 8 vCPUs respectively, and 3 for V100). The communication
costs among different tiers (e.g., from edge to cloud) range from 0.1
to 0.3 unit cost per GB; for example, direct communication from
edge to cloud bypassing local hubs is more expensive.

We also leverage prior VQA and AICity solutions on top of the
benchmarks from [15, 40] and set up the accuracy and through-
put targets used in our experiments based on the profiles of these
state-of-the-art solutions. The virtual machines are chosen such
that small and medium aim for low serving costs without edge
GPUs, while the larger setups aim for low latency with edge GPUs
available. The later cases also demonstrate how compute can be
moved to the cloud when the edge has not enough compute power.

Evaluation metrics used in our experiment include:

Performance. We report both estimated and actually achieved through-
put in one hour, as well as various overheads incurred by our query
optimizer and processor. We also aim for a system that provides
viable trade-offs between accuracy and throughput; we report the
actual accuracy scores on the validation sets described earlier.

Serving costs. We report the compute and networking costs of exe-
cuting the ML workload on the infrastructures specified in Table 4.
We evaluate the costs while varying the target accuracy and input
throughput. For JellyBean and all baselines (described next), we re-
port the serving costs and other metrics when the system saturates,
excluding model loading, system startup and shutdown time.

Baselines and comparisons. To compare JellyBean (JB) over state-
of-the-art ML serving solutions on heterogeneous infrastructures,
we consider the following baselines in our experiments:
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Figure 6: Achieved throughput and accuracy given different input
throughput on the medium setup.

Worker assignment strategies. Inspired by geo-distributed database
placement [29, 51, 54] and VM placement strategies [25], we com-
pare with using the following model selection and worker assign-
ment strategies while using the JellyBean processor®: (1) Best Fit
(BF) is inspired by geo-distributed database optimizers [29, 54]
to reduce the networking costs; it uses the most accurate model
and greedily assigns jobs to the cheapest worker on the same in-
frastructure tier. (2) First Fit (FF) follows a classic VM placement
strategy [51] in which each operator uses the most accurate model
and assign jobs to the cheapest worker regardless of their location.
(3) Lower bound (LB): we compute a lower bound of the serving
cost by enumerating over all possible model choices and worker
assignments when keeping the placement constraints (A2). This
baseline showcases the optimality of our solution and it is worth
noting that BF and FF may not follow the networking constraints
used in JB and LB.

End-to-end ML serving. To our best knowledge, there lacks an off-
the-shelf solution for serving ML on heterogeneous infrastructures
while supporting the functionalities that JellyBean can provide. We
use the following variants of existing systems to echo the real-world
ML deployments. (1) We perform all computation on a single GPU
worker using native PyTorch to handle the entire workflow. Doing
so has the minimum compute overhead from the software stack

SWe note that Worst Fit placement [51] that greedily puts models on the most expensive
location does not fit in our context.
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Table 5: Cost analysis on the AICity dataset. We show the costs for
one hour of input data with input throughput specified in Table 4
and the corresponding query optimizing time (QO).

Model medium large
Select. Assign. Comp. Net QO  Comp. Net QO
JB JB 127 84 65ms 170 13.6 7.8ms
LB LB 13.0 8.1 2.1s 17.0 13.6 27min
JB FF 9.0 14.1 39ms 12.0 19.1  5.7ms
JB BF 16.0 8.3 3.4ms 20.0 13.5 3.4ms

beyond PyTorch but has to pay potentially large networking costs if
the workers are on the cloud. By default, we use the most accurate
models that are available and denote PTe as running PyTorch on
the edge, pretending that there is a V100 GPU and counting the GPU
costs; PTc runs PyTorch on a cloud V100 GPU, which is equivalent
to PTe plus networking costs. (2) We assume the data is transferred
to the cloud and use the most accurate models in a Spark. This
baseline leverages all the cloud GPU workers in each infrastructure
setup (Table 4) and performs data parallelism upon native PyTorch
wrapped in a map function (SPc).

Model selection. The baselines above use the most accurate models
available, since none of them solves the model selection problem.
We will perform in §6.3 an ablation study to examine the effec-
tiveness of our proposed model selection strategy, showing the
optimality gap from using brute force.

6.2 System Evaluations

System efficiency. We showcase G1 by the the end-to-end evalu-
ations in Figure 5 and Table 5 using various workload and infras-
tructure settings in Table 4. We note a few observations here:

JB demonstrates the best performance with different datasets
and setups compared to the baselines. On VQA, JB saves the total
serving cost up to 58.1% compared to the best-performing baseline
(PTc) and up to 5x compared to end-to-end ML systems SPc. On
AlCity, JB saves the total cost for up to 36.3% compared to the
best-performing baseline (PTc) and up to 2.1x comparing to SPc.

We showcase the actual throughput and accuracy in Figure 6.
JB achieved near 1:1 for actual:expected throughput (diagonal line).
The results for the large setting is shown in Appendix [9]. With
increasing input throughput but fixed available infrastructures,
JellyBean successfully trades off throughput with accuracy by pick-
ing suitable models.

Comparing JB to LB, we observe a subtle difference in the overall
serving costs — with different input throughput, 94.2% of the chances
JB provides a total cost that has less than 1% difference to that
provided by LB on AICity. LB requires a large QO time as will be
shown next and becomes unusable — in AICity, medium has 8K
choices while large has 7M choices.

Figure 7 illustrates a qualitative example of the execution plans
of JB and LB when they do not match. JB uses 1x16 worker and a
larger ResNet model for feature extraction, while LB uses 1x2 and
1x8 which leads to a lower cost. BF and FF failed to find overall
optimal execution plans in our experiments; though in some cases,
they find plans with low compute or low network costs solely
(e.g., BF with low network cost while FF with low compute cost
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Table 6: Costs of operators upon the medium setup. E: Edge. H: Hub.
C: Cloud. Original: the latency with native PyTorch. QP exec: the
overhead of executing the operator in the JellyBean query processor;
QP network: the overhead of communication.

VQA Node ‘ Orignial (ms) QP exec. QP network

Operator | Pso P P50 P9 P50 P90

ImgFeat x2E 152.2 1619 +25%  +4.1% +12% +1.3%
ImgFeat x4E 76.6 82.3 +74%  +8.1% +3.9% +3.6%
ImgFeat x16E 27.4 294 +11.7% +194% +6.1% +6.0%
ASR x8E 251.0 297.6 +23% +1.0% +0.4% +0.4%
ASR V100C | 24.1 26.3 +08%  +0.8% +0.6% +0.5%
VQA x48C | 63 86  +97% +12.6% +4.8% +6.9%
AlCity Node Orignial (ms) QP exec. QP network

Operator | P50 P9 P50 P9 P50 P90

ObjDet x2E 1412 1455 +3.4% +82% +0.3% +0.4%
ObjDet x4E 721.0 7320 +6.4% +87% +0.4% +0.7%
ObjDet x8E 451.7 4683 +3.5% +6.1% +0.8% +0.8%
ObjDet V100H | 19.7 20.6  +13.7% +133% +8.2% +10%
RelD V100C 8.4 8.7 +6.5%  +7.5% +6.0% +6.2%
RelD V100C 8.5 8.8 +6.1%  +7.6%  +20% +20%

in Table 5). This can be as expected since their heuristics ignore
model accuracy-efficiency trade-offs and the resource availability
on heterogeneous infrastructures. In most cases, BF and FF have
much higher costs than JB; using heuristics that consider network
or compute cost solely is suboptimal. On the other hand, model
selection greatly helps to reduce the overall costs, especially when
the accuracy target is lower. PTc and SPc use homogeneous GPU
computing, which results in lower compute costs than JB yet larger
networking costs since the raw data must be transferred from the
edge. SPc exhibits more overhead as compared with PTc [45]. PTe
is a hypothetical baseline that assumes strong GPUs on the edge,

and thus leads to minimum compute costs at zero networking cost.

In real-world applications, with no resource constraint, users should
adopt this solution; however, this is often not true in practice.

Further evaluations in Appendix [9] show that JellyBean often
yields serving costs equal to or close to the lower bound. We also
discuss some failure cases in the Appendix. For instance, in the case
that Assumption A2 is removed.

We observe that the runtime variance is low across all setups; for
example, the standard deviation from five runs on the large setup
is 0.003% for AICity and 0.020% for VQA. The runtime variance on
the xlarge setup is reported .
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System overhead. Table 5 also illustrates G3 - the JB optimizer
has a small overhead with the QO time of JB in a few milliseconds.
In comparison, LB uses brute force, which incurs adverse QO time
in larger infrastructure settings (e.g., 27 minutes for large). Other
placement strategies have smaller QO time due to a smaller search
space, but the total serving costs are larger.

We further demonstrate in Table 6 the compute overhead of the
JB processor. We show the 50th and 90th percentile of various ML
operators in native PyTorch and by the JB processor. The overhead
caused by JB processor, as partially been discussed in [48], contains
that for metadata parsing, data (un)packing, network I/O, and task
scheduling. The QO latency is reported on 1x8 virtual CPU node
with a Python implementation. Results indicate a small overhead
ranging from a few to 19% upon the native PyTorch executions.
This is significantly smaller that that of Spark which may take up
to 300% (as shown in Figure 5).

Remark. Our evaluations across various workload and infrastruc-
ture setups showed that JellyBean efficiently computes and deploys
execution plans and significantly reduces the total serving cost of
real ML workloads. We believe it is beneficial to leverage JellyBean
for serving ML on heterogeneous infrastructures across a wide
range of real-world applications.

6.3 Ablation Study

We leverage the medium setting and evaluate JellyBean by sweeping
different knobs used during query optimization. We also demon-
strate similar experiments on other setups in Appendix [9].

Input throughput. To demonstrate the scalability of JellyBean
and to supplement Figure 5, we leverage a fixed target accuracy as
in medium and demonstrate how the costs change when varying
the input throughput. Figure 8 shows the results. We observe that
JellyBean can keep up with increasing input throughput and is near
optimal — in most situations, JB achieves the same total serving
costs as LB. For BF and FF, no valid execution plans can be found
beyond 51 rps and 8 fps (VQA and AICity, respectively).

Target accuracy. To show that JellyBean provides viable accuracy-
cost trade-offs, we fix the target throughput as in medium and
demonstrate the total serving costs by varying the target accuracy.
Figure 9 shows the results. BF and FF solve only for placement while
using the most accurate models, and thus the costs are constant.
For the scenarios we examined, JellyBean is near optimal across
a range of accuracy targets. JB and LB eventually use the most
accurate models, converging with FF for AICity.

Effect of model selection. To examine the model selection strat-
egy used in JellyBean (§4.2), Table 7 illustrates an ablation study
in which we substitute our model selection for either the most
accurate models or a brute force selection. We also evaluate our
model selection strategy for PTc and SPc. Results show that our
proposed model selection is effective with our JellyBean processor
as well as other ML runtimes.

6.4 Sensitivity Analysis

We further study the robustness and flexibility of JellyBean (G4)
with the following sensitivity analysis experiments.
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Table 7: Ablation analysis of model selection on the AICity dataset.

Model medium large

Select.  Assign. Comp Net QO Comp Net QO
JB JB 12.7 8.4 6.5ms 17.0 13.6 7.8ms
Most acc. JB 14.3 14.0 1.2ms 17.5 19.1 1.3ms
Brute f. JB 12.7 84 1l.6ms 17.0 13.6 15.0ms

JB PTc 5.3 272 N/A 7.3 374 N/A

JB SPc 5.8 27.2 N/A 8.0 37.4 N/A

Most acc. PTc 7.6 272 N/A 104 374 N/A

Most acc. SPc 8.7 272 N/A 120 374 N/A

Effect of resource over-subscriptions. When there are more re-
sources than needed, especially on the cloud, can JellyBean handle
the workloads without wasting resources? Also, how do the costs
change? We answer these questions by deploying the small work-
load on the medium infrastructure (Table 4). Figure 10 illustrates
the results. We observe that, compared with using the small infras-
tructure, more resource availability will not significantly increase
the serving cost for JellyBean with a fixed workload. However, BF
and FF cannot guarantee cost efficiency in such a scenario. This
is largely due to their sub-optimal worker assignment strategies
which disregard resource availability. With JellyBean, users may
use large cloud subscriptions without wasting resources.

Base unit network costs. We examine the effect of varying the
network costs in a medium setup, which play a critical role in the
total serving costs. Figure 11 showcases a change in cost from 0 to
1 (per GB). Interestingly, for VQA, we found that the unit network
costs actually have minor effects on the execution plans and the
plan changes are subtle - this is due to a relatively higher compute
cost on the cloud, so the computation is kept at the edge. Meanwhile,
on AICity, we use blue dots to show where the plan changes, though
the total serving cost is near linear. We present actual query plans in
Figure 12 to show an example plan change when the network cost
is reduced by 90% and compute is shifted to higher-tier workers.
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Figure 11: The overall serving costs w.r.t. base unit traffic cost. Dots
indicate when the execution plan changes. On AICity, different lines
are near linear after 0.12 and hence we show cropped results.

Effect of infrastructure changes. We examine the flexibility of
JellyBean when there are additional resource caps on the medium
setup. Specifically, we placed a 10Mbps bandwidth constraint over
all edge devices, mimicking real-world scenarios with limited net-
working. The JellyBean optimizer simply applies an additional
constraint and limits the search space; there is no change on the
processor and execution engine. Figure 13a illustrates the results
and our findings. To reduce network costs, the JellyBean optimizer
uses more compute resources on the edge. The blue curve ends
early since no viable solution can be found.

We change the number of workers allocated to different tiers,
and observe how the total serving cost changes (Figure 13b). Since
there are 9 total workers in the medium setting, we rank them
according their cost and place those with higher costs on higher
tiers (and vice versa). For instance, in the 5:4 case, the edge has 1x2,
1x4, 2x8 workers, and the cloud has 1x16, 1x48, 3xV100. Results
show that JellyBean successfully finds good execution plans in all
the settings; more cloud resources does increase the network costs.

Effect of profiling. In our previous experiments in §6.3, we lever-
aged the profiling of P75 percentiles as inputs to our QO and report
actual runtime numbers; doing so gives extra room for the QO to
find valid plans. In Figure 5, we also explore the estimated costs
using P50 and P90 efficiency profiles on the error bars. We observe
a small variance — the the actual runtime using P75 in most cases
falls in the middle of estimates using P50 and P90. In some cases,
the optimizer chooses different plans which leads to discontinuity
of the costs. Overall, we observe that this has minor effects on our
end-to-end solution.

7 DISCUSSION

Obtaining diverse model choices. The user optionally provides a
list of model choices for each operator in the workflow. Our current
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prototype depends on this provided model choices. However, in
the future JellyBean can also enrich the choices using off-the-shelf
model quantization, pruning, and distillation tools. Several tools
already exist today, and it is an active area of research in ML [19,
22,30, 41, 53, 59] in order to democratize ML on weak edge devices.
To integrate these tools into JellyBean, we can simply invoke them
to derive cheaper models offline (similar to how we profile models
for their accuracy profiles). We acknowledge that running these
tools may require us to access the original training data and labels.

Limitations. As discussed in §4 and §5, we used a one-to-one map-
ping between the workers and operators. Using a one-to-multiple
mapping to consolidate the operators may further improve the per-
formance and can be an interesting further work to explore. Doing
so may require automatic grouping of the operators. Nevertheless,
we have shown in §6.3 that our processor already has low overhead.

JellyBean also assumes the heterogeneous infrastructures to have
near constant input requests on the edge devices; this is true for
the use cases discussed in §2 and in our experiments. Exploring use
cases that do not fall into this category, such as security sensors or
cluster telemetries which send only intermittent signals, can be an
interesting future work. Besides, we used one-time profiling and
fixed worker costs in our experiments; quickly adapting to changes
in these aspects can also improve the usability of our system.

8 RELATED WORK

Edge-cloud systems. Moving compute to the edge can reduce the
networking cost and is used in video analytics to eliminate the need
to transfer raw video streams. Chameleon [32] leverages temporal
and spatial correlations to tune frame resolution, sampling rate,
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detector model configurations for an optimal resource-accuracy
trade-off. In [62], a latency and energy consumption model is con-
sidered for choosing the configuration. Jain et al. [31] scale video
analytics to large camera deployments using hand-crafted rules that
leverage cross-camera correlation to improve cost efficiency and ac-
curacy. EIf [67] applies a content-aware approach to offload smaller
inference tasks in parallel to edge servers. These works considered
a simple edge-cloud infrastructure and used workload-specific opti-
mization techniques. We support optimizing and running arbitrary
ML workflows on a wide range of infrastructures, both of which
are inputs to our optimizer.

ML inference systems. Serving machine learning inference has
attracted great attention. TensorFlow Serving [49] is one of the
first serving systems for production environments. Clipper [21]
maximizes throughput under a user-specified latency service-level
objective (SLO), model selection policies are also integrated to pro-
vide different cost-accuracy trade-offs. Nexus [60] automatically
chooses the optimal batch size and the number of GPUs to use
according to the request rate and latency SLO. Model DAGs are also
considered in other works [4, 20, 27, 28, 57, 58]. JellyBean differs
in two ways. First, we choose individual models based on input
throughput and target accuracy for the entire ML workflow. Second,
we target at deploying ML workflows on heterogeneous infrastruc-
tures, where prior works focused on either: a) homogeneous cloud
datacenters or edge devices only, or b) heterogeneity within a single
tier (i.e., datacenter).

Optimizing ML queries A number of works have been proposed
in optimizing ML queries at either logical- or physical-level. Lu et
al. [43] filter data that does not satisfy the query predicate by using
probabilistic predicates. Blazelt [34] optimizes aggregation and limit
queries for videos. Yang et al. [64] exploit predicate correlations to
build proxy models online to avoid exhaustive offline filter construc-
tion. Optimization at physical execution-level is addressed in some
of the ML serving systems that support model DAGs. For instance,
Llama [58] applies a greedy strategy that chooses cost-efficient
worker configurations for video analytics pipelines. These works
did not consider network cost, because these systems target pure
datacenter deployment scenarios. JellyBean optimizes general ML
workflows jointly at logical and physical levels for a heterogeneous
infrastructure across edges and the cloud.

9 CONCLUSIONS

The rise of smart home devices and the Internet of Things opens
up the opportunity for ML serving systems at the level of both the
infrastructure and ML workflow to explore new trade-offs between
accuracy and performance. We build JellyBean, an ML serving to op-
timize ML workflows which takes into account the cost, availability,
and performance of the increasingly tiered and heterogeneous in-
frastructures. JellyBean significantly reduces the total serving cost
of visual question answering and vehicle tracking from the NVIDIA
Al City Challenge compared with state-of-the-art solutions.
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