
Harmonic: Hardware-assisted RDMA Performance Isolation for Public Clouds

Jiaqi Lou1∗ Xinhao Kong2∗ Jinghan Huang1 Wei Bai3† Nam Sung Kim1 Danyang Zhuo2

University of Illinois Urbana-Champaign1 Duke University2 Microsoft3

Abstract
Performance isolation is essential for sharing resources in
multi-tenant public clouds. Compared with traditional kernel-
based networking, RDMA presents unique challenges espe-
cially because RDMA NIC’s complex microarchitecture re-
sources are often hidden from users. Current RDMA isolation
methods overlook these microarchitecture resources, lead-
ing to insufficient performance isolation. Consequently, a
faulty/malicious tenant can exploit these microarchitecture re-
sources to compromise well-behaved tenants’ network perfor-
mance. In this paper, we introduce the first microarchitecture-
resource-aware RDMA performance isolation solution for
public clouds, Harmonic. It consists of two key components
designed to be conscious of the RDMA NIC’s microarchitec-
tural resources: (1) a programmable intelligent PCIe switch
(prototyped with FPGA) and (2) an RDMA-friendly rate lim-
iter. At runtime, these two components allow us to accurately
monitor and modulate the RDMA NIC resource usage per
tenant. We evaluate Harmonic with a state-of-the-art RDMA
performance isolation test suite (Husky) and a popular in-
memory database application (Redis). We demonstrate that
Harmonic can not only successfully pass Husky but also pro-
vide Redis with 1.4× higher throughput than the best alterna-
tive isolation solution.

1 Introduction
The Remote Direct Memory Access (RDMA) technology has
been widely deployed in modern clouds to improve network
performance. First-party workloads in clouds, such as stor-
age [11, 17], heavily rely on RDMA to achieve high through-
put, low latency, and high CPU efficiency. A natural next step
for cloud providers is to bring RDMA’s benefits to their pub-
lic cloud tenants. Unfortunately, this has not yet come true
because RDMA was initially designed for high-performance
computing, lacking adequate multi-tenancy support.

One of the key missing components for bringing RDMA to

∗Jiaqi Lou and Xinhao Kong contributed equally to this research.
†Wei Bai is now with NVIDIA.

public clouds is performance isolation. Without proper per-
formance isolation, a buggy or malicious tenant can affect the
RDMA performance of other tenants, and even conduct side-
channel attacks through the RDMA network [29, 52, 54, 55].
Although network performance isolation has been extensively
studied in the past decades [10, 12, 19, 20, 25, 32, 53], recent
work has highlighted that prior RDMA performance isolation
solutions are insufficient for public clouds [29]. An RDMA
NIC (RNIC) has microarchitecture resources, such as on-NIC
cache and on-NIC processing units that significantly affect
RDMA performance [26, 27, 29]. However, all existing per-
formance isolation solutions are agnostic to the contention of
these microarchitecture resources among tenants, providing
insufficient performance isolation when the microarchitec-
ture resources are exhausted. For example, RDMA traffic that
keeps generating expensive ATOMIC requests can exhaust
the on-NIC processing units and drastically reduce the RDMA
performance of other tenants [29, 46].

The goal of this paper is to explore the possibility of build-
ing a microarchitecture-resource-aware solution for RDMA
performance isolation. Our high-level approach is as follows:
we monitor the usage of RDMA resources (including mi-
croarchitecture resources) per tenant, and then modulate it
accordingly to provide isolation. Yet, realizing our approach
faces two challenges:
(C1) Accurately measuring per-tenant RNIC resource us-
age. RDMA traffic bypasses the kernel, which makes it hard
to intercept and monitor the RDMA traffic in system software.
Moreover, RNICs today only expose limited aggregate statis-
tics, such as RNIC cache miss rates and total PCIe bandwidth
consumption, without the capability of identifying the specific
tenant causing this resource usage.
(C2) Finding an appropriate rate limit enforcement entry
point. System software is not a viable rate limit enforcement
point because most RDMA operations bypass the control of
cloud providers. Commodity RNICs also do not provide rich
rate enforcement features. For example, no current RNIC pro-
vides a mechanism to limit a tenant’s rate of specific RDMA
operations (e.g., ATOMIC), and cloud providers cannot feasi-



bly modify existing RNICs to incorporate these new features.
We also cannot simply drop excessive packets at the RNIC,
because packet losses can significantly degrade RDMA per-
formance [21, 31, 60, 64].

Our key approaches to addressing the above challenges
are outlined below. First, we make a PCIe switch serve as a
sweet spot for measuring the RDMA resource usage of ten-
ants at runtime. This choice is motivated by the following
reasons. All RDMA traffic goes through the PCIe bus, allow-
ing us to intercept all RDMA behaviors. More importantly,
RDMA pins all RDMA-related objects (e.g., payloads and
other metadata) in the host DRAM. Thus, the physical ad-
dress to tenant/object mapping is fixed. This enables us to
correlate a PCIe transaction with a specific tenant and asso-
ciated RDMA behaviors by mapping the transaction’s target
physical memory address to the RDMA objects.

To tackle the second challenge, we repurpose the rate lim-
iters in RNIC hardware for our performance isolation. Modern
commodity RNICs employ many rate limiters for congestion
control purposes. These rate limiters react to network con-
gestion feedback and reduce rates accordingly. We therefore
can proactively inject an appropriate amount of congestion
feedback to targeted tenants, to limit their rates when we need
to limit their RDMA resource usage.

Applying our insights above, we develop Harmonic, the
first hardware/software co-design solution for RDMA perfor-
mance isolation that takes RNIC microarchitecture resources
into account without requiring changes to applications. To
measure the RDMA resource usage of tenants at runtime, we
implement an FPGA-based Programmable Intelligent PCIe
Switch (PIPS) in Harmonic. We extend existing RNIC kernel
drivers to a Harmonic kernel driver to obtain the aforemen-
tioned physical memory address to tenant/object mappings.
PIPS connects the RNIC to the host, and monitors the RDMA
traffic of each tenant using the mappings provided by the Har-
monic kernel driver. We implement a Harmonic daemon to
repurpose the rate limiters in the RNIC hardware. Most, if not
all, commodity RNICs support DCQCN [64] as congestion
control algorithm [13, 24, 40]. The Harmonic daemon there-
fore can generate and send Congestion Notification Packet
(CNP), the congestion feedback in DCQCN, to rate-limit tar-
geted tenants for our performance isolation purpose. The
Harmonic daemon limits tenants’ rates based on PIPS’s mon-
itoring results. To make performance isolation more practical
for public RDMA clouds, we also extend the existing RDMA
performance abstraction to include a set of RDMA-specific
resources, such as the number of QPs and the RDMA request
rate.

We use Harmonic to enhance an NVIDIA ConnectX-6
Dx 25 Gbps NIC and evaluate Harmonic with the state-of-
the-art RDMA performance isolation test suite, Husky [29],
and a popular in-memory database application, Redis over
RDMA [63]. We compare Harmonic with other performance
isolation solutions, including hardware Single Root I/O Vir-

tualization (SR-IOV), separate hardware queues, and Justi-
tia [62]. Our evaluation results show that Harmonic success-
fully provides stronger performance isolation under various
types of resource contention. This results in improving the
throughput of Redis by up to 1.4×, compared to the state-
of-the-art isolation solutions. To the best of our knowledge,
Harmonic is the first RDMA performance isolation solution
that can pass the Husky test suite [29].

Lastly, current Harmonic supports 25 Gbps RNICs, limited
by the speed of the PCIe physical layer (PCIe PHY) in our
commodity FPGA development board1. A deployable solu-
tion for high-speed RNIC will require adopting our proposed
techniques in the future RNIC design. While Harmonic serves
as a prototype, it demonstrates the viability of RDMA perfor-
mance isolation for public clouds and can act as a benchmark
for future implementations. Our design presented in this pa-
per is currently being integrated into one leading technology
enterprise’s next-generation RNIC design.

2 Background
2.1 Remote Direct Memory Access

RDMA enables user applications to directly interface with
RNIC by offloading network stack processing to RNIC hard-
ware. RDMA enables low-latency, CPU-efficient networking
at high bandwidth, and it is increasingly deployed at datacen-
ters [11, 17, 21]. For example, Bai et al. [11] demonstrated
that more than 70% of traffic in Azure is RDMA.

Figure 1 shows the four key components (i.e., userspace li-
braries, kernel drivers, RNIC firmware, and RNIC ASIC) in a
modern commodity RDMA system from a top-down perspec-
tive. The first component that user applications interact with
is userspace libraries. Applications invoke APIs provided by
these libraries to issue data verb and control verb operations.
For example, applications call control verbs to allocate neces-
sary objects such as queue pair (QP), completion queue (CQ),
and memory region (MR). Applications thereby issue data
verbs to send RDMA network traffic, such as RDMA WRITE
requests to directly write remote host’s memory. In a typical
RDMA system, control verbs are first processed by RDMA
kernel drivers. Kernel drivers usually conduct a few checks
(e.g., parameter validation) and construct a command to send
to the RNICs. In the RNIC, a small piece of software or mi-
crocode embedded into hardware device memory will process
these commands and return results to the kernel drivers, such
as the newly created QP [42]. This software on the RNIC
is known as the RNIC firmware. When the RNIC firmware
processes control verbs, RNIC ASIC is also involved since
many hardware status may be updated. For example, RNIC

1We find that the state-of-the-art FPGA whose PCIe PHY can be con-
figured in PCIe switch upstream/downstream mode only has 8-lane edge
connector after several rounds of communication with our FPGA manufac-
turer, Xilinx. This is also confirmed by Xilinx’s public information [3, 4],
but it can support any RNICs with any speed offered by the PCIe PHY. We
discuss the scalability of our solution to higher speed in §7.



Kernel Drivers

RDMA 
Libraries

Firmware
ASIC
Cache

PU PU…

App

(1)

(2)
(3)

(4)

(5) Userspace

Kernel

PCIe

RNIC
Control verbs Data verbs

Figure 1: RDMA workflow.

has on-NIC cache to store QP contexts [27], which can be
accessed and updated when the RNIC firmware handles QP
creation or destruction.

Data verbs are directly passed to RNIC hardware without
involving kernel drivers (or any system software), which is
known as kernel bypass. For example, when applications call
ibv_post_send to issue an RDMA SEND request, userspace
libraries prepare work queue entries (WQEs) in send/recv
queues. Each entry in the queues corresponds to a data verb.
The libraries then notify the RNIC hardware that there is a
WQE to process. Specifially, the libraries may ring the door-
bell of the corresponding QP (i.e., write a specific register)
on the RNIC, triggering RNIC hardware to DMA read those
WQEs from the host and start to process. When processing
data verbs, RNIC firmware may also be involved under some
scenarios, such as handling an error triggered by a data verb.

There are three types of resources in RNICs:
(R1) Traditional network resources. They include network
bandwidth and packet processing capacity, indicated by bits
per second (BPS) and packets per second (PPS), respectively.
(R2) RDMA-specific architectural resources. They com-
prise the number of QPs and request rates of different verbs
(e.g., ATOMIC, WRITE, and SEND) that applications can
directly operate on.
(R3) RDMA-specific microarchitecture resources. They
encompass the PCIe bandwidth, on-NIC cache and on-NIC
processing units that are vendor-specific. These resources are
not exposed to applications and can be neither monitored nor
controlled precisely [31].

2.2 RDMA Performance Isolation

RDMA has already been successfully adopted in accelerat-
ing first-party workloads such as storage [11, 17]. The next
question is whether these RDMA advantages can be extended
to third-party workloads in the public cloud. RDMA perfor-
mance isolation for public clouds is important, as customers
primarily choose RDMA for workloads with demanding per-
formance requirements. Without proper performance isola-
tion, a faulty or malicious tenant could detrimentally impact
the performance of other tenants [29].

To design a performance isolation solution, one key ques-
tion is: what’s the abstraction of network performance? The
conventional wisdom is that a cloud provider should guarantee
network bandwidth, measured by BPS, to a virtual machine
(VM) or container. For example, Amazon Web Service (AWS)
provides a 30 Gbps guarantee for its m7gd.16xlarge instance

and Azure offers a 40 Gbps guarantee for its D96as_v5 VM
series [7, 35]. This is done by limiting the available network
bandwidth to the remaining VMs co-located on the same host.

In this paper, we argue that this conventional wisdom does
not work for an RDMA network. The aforementioned mi-
croarchitecture resources make RDMA performance isola-
tion different from that on traditional TCP/IP networks. In
RDMA, most verb processing tasks are offloaded to the RNIC
firmware and RNIC hardware. RNICs leverage their inter-
nal resources to support these offloaded functionalities. Not
considering these resources results in performance isolation
designs that are insufficient to be used in public clouds. One
of the empirical evidences is that Husky [29], a prior work, has
already shown that no mature RDMA performance isolation
solution exists. Therefore, a comprehensive RDMA perfor-
mance isolation solution for the public cloud has to consider
various types of interference on RNIC’s microarchitecture
resources, which can occur when multiple tenants contend for
access to these resources.
Static partitioning versus dynamic resource usage mod-
ulation. In general, there are two approaches to achieving
performance isolation when sharing resources. Our paper
explores the dynamic resource usage modulation approach,
which is to monitor and control each tenant’s resource usage.
The other approach is to statically partition every resource and
assign partitioned resources to each tenant. We did not explore
the static partitioning approach for two reasons. First, RNIC
microarchitecture resources (e.g., NIC caches) are crucial
for applications’ performance. We have observed many prior
works in RDMA application design to use these resources ef-
ficiently in order to avoid resource exhaustion [15, 26, 27, 31].
Static partitioning of these resources may cause catastrophic
performance penalties for RDMA applications. Second, com-
modity RNICs currently do not support static resource parti-
tioning, and exploring this approach thus requires building an
RNIC from scratch, which is beyond the scope of our research.
Our goal is to design a prototype that shows feasibility for
deployment, and we thus choose to build our system around
commodity RNICs.

2.3 Design Space for Monitoring and Controlling Tenant
RDMA Resouce Usage

Two key questions arise for monitoring and controlling ten-
ants’ RDMA resource usage: (1) where should the cloud
provider monitor per-tenant resource usage, and (2) where
should the provider enforce resource usage?

The answers to these two questions depend on the deploy-
ment model of RDMA, i.e., how RDMA is virtualized. Fig-
ure 2 shows the ownership (i.e., owned by tenants or cloud
providers) of RDMA system components in typical RDMA
virtualization schemes. In the bare-metal scenario, tenants
own the entire physical host, including userspace libraries
and RDMA kernel drivers. They can even modify and up-
grade RNIC firmware as needed [41]. Cloud providers have



Tenant

Host

NIC

(1) Bare-metal (3) Guest Virtual Machine (4) Microkernel Approach

Control verbs
Data verbs

Control verbs 
(SR-IOV)

PCIe

Drivers

Userspace
Libraries

Firmware ASIC

(2) Containerize Cloud

Privileged 
DaemonDrivers

Firmware ASIC

Drivers Userspace
Libraries

Hypervisor
Drivers

Firmware ASIC

Drivers Userspace
Libraries

Drivers

Userspace
Libraries

Firmware ASIC

Software owned by tenants
Software owned by clouds
Hardware owned by clouds

Tenant instances

Figure 2: RDMA virtualization schemes.

limited observability and control over both data and control
verbs in this scenario. However, RNIC isolation is not a press-
ing concern as one tenant exclusively occupies the entire
machine.

In containerized clouds, each tenant owns a container, and
the host OS manages all containers. In this setup, a tenant
owns its container instance, including userspace libraries. The
tenant’s data verbs therefore fully bypass the cloud provider’s
control. However, drivers and hardware components are still
controlled by the cloud provider, allowing them to implement
management features. For instance, cloud providers can mon-
itor and regulate RDMA control verbs by incorporating the
necessary logic into kernel drivers.

In guest virtual machine (VM) clouds, each tenant owns
a VM, running on top of the hypervisor. There are several
approaches to exposing an RNIC to guest VM. A widely
adopted approach is to use Single Root Input/Output Virtu-
alization (SR-IOV). With SR-IOV, multiple virtual instances
of the RNIC, referred as Virtual Functions (VFs), are allo-
cated on a physical RNIC. These VFs can be attached to
VMs, allowing applications within the VM to directly interact
with and utilize the RNIC. The control verbs and data verbs
generated by guest VM applications bypass the hypervisor
completely. HyV [49] and MasQ [22] employ hybrid virtu-
alization techniques to expose RDMA to guest VMs. They
introduce backend drivers within the hypervisor, requiring
guest VM drivers to communicate with these backend drivers
for processing tenants’ control verbs. The hypervisor operates
control verbs on the RNICs on behalf of these tenants. Mean-
while, tenants within the guest VMs have the capability to
directly transmit data verbs to the RNIC, bypassing the guest
kernel and the hypervisor. This ensures native RDMA perfor-
mance for tenant applications. In these guest VM scenarios,
cloud providers typically retain ownership of the hardware
components, while the ownership of kernel drivers may vary
depending on the specific scheme being employed.

Another virtualization scheme adopts a microkernel-like
approach. It forces all tenants to talk to a privileged daemon
to use RDMA, such as Freeflow [28] and mRPC [14]. In this
scenario, tenants send both control verbs and data verbs to
this privileged daemon. The daemon, in turn, initiates the
actual RDMA APIs to execute these verbs and subsequently
provides the results back to the tenants. This design grants
cloud providers comprehensive control over all aspects but

comes with the trade-off of additional performance overhead.
Existing solutions’ observability and enforcement entry
point. To summarize, except for bare-metal environment and
virtualization only using SR-IOV, control verbs can be mon-
itored and controlled by cloud providers in kernel drivers,
hypervisor backend or privileged daemon. However, data
verbs cannot be easily observed or regulated. In containerized
cloud (2) or guest VM (3) scenarios, data verbs completely
bypass cloud provider’s control. Justitia [62], an RDMA per-
formance isolation solution, requires tenants to use its cus-
tomized userspace libraries. However, a malicious tenant can
easily bypass or alter the libraries, circumventing the intended
isolation. For the microkernel approach, even if we add per-
formance isolation features into a microkernel service, it is
still challenging to accurately monitor and regulate data verbs,
especially for one-sided operations. For example, RDMA one-
sided operations (e.g., WRITE and READ) completely bypass
the responder’s CPU and therefore cannot be intercepted by
the privileged daemon easily.

3 Harmonic Overview
We develop Harmonic, the first RDMA performance isolation
solution for public clouds that considers RDMA microarchi-
tecture resources. Our design incorporates three key ideas.

We first introduce an RDMA-specific performance abstrac-
tion tailored for public clouds. Currently, cloud providers
provide tenants with network abstractions based on BPS or
PPS. Unfortunately, such metrics fall short of capturing the
varied sets of resources RDMA operations use. RDMA sup-
ports various verbs as its primitives, and these verbs demand
distinct resource usage. For example, let’s consider an 8-byte
RDMA ATOMIC compare-and-swap (CAS) request and an 8-
byte RDMA SEND request. Both generate identical network
traffic in terms of bits and packets, yet the ATOMIC request
consumes more NIC processing cycles [27, 29], thus incur-
ring a higher cost. Our performance abstraction considers the
RDMA-specific architectural resource capacities allocated to
each tenant, such as the number of QPs, CQs, MRs, and the
total MR size. It is worthwhile to note that our abstraction
does not include RDMA-specific microarchitecture resources,
because these resources are vendor-specific and cannot be
directly controlled by tenants.

The second pillar of our design ideas is to perform runtime
hardware-based measurements of per-tenant RDMA resource



consumption. Since RDMA data verbs bypass the kernel, re-
source measurement requires direct hardware involvement. In
RDMA networks, a tenant’s resource consumption is tightly
coupled with its verb behaviors. Therefore, by intercepting
and analyzing these verbs, we can gain precise insights into
the resource consumption of that particular tenant. However,
we cannot directly observe verb behaviors on the inter-host
network, i.e., Ethernet (for standard RoCEv2 deployment).
This limitation arises because many RNIC resource usage be-
haviors would be opaque if we only monitor packets sent and
received by the RNIC. For instance, the RNIC initiates PCIe
transactions to retrieve entries from DRAM when its cache en-
tries are exhausted. This RNIC activity incurs both cache miss
and extra consumption of PCIe bandwidth—a crucial microar-
chitectural resource—but remains undetected on the Ethernet.
We argue that we need to observe this within the host. We find
PCIe switch as a sweet spot to enable this runtime measure-
ment feature for two reasons. First, all RDMA traffic goes
through PCIe bus, allowing us to capture all tenants’ verb
behaviors including the host memory address to be accessed
in the PCIe Transaction Layer Packet (TLP) header. Second,
RDMA requires all RDMA-related objects (e.g., payloads,
QPs, CQs) to be pinned in the host DRAM. This indicates
the physical address to objects/tenants mapping is fixed and
we can monitor tenant’s verb behaviors by monitoring which
addresses are accessed. Therefore, we can simply parse the
TLP header to extract the address field and match it with
the mapping, without looking into the large volume of PCIe
TLP payloads. There is no existing PCIe switch supporting
this functionality. We therefore build an FPGA-based Pro-
grammable Intelligent PCIe Switch to prototype this runtime
measurement feature. The analogy of this PCIe switch is a
programmable switch (e.g., P4-based Tofino switch) in the
traditional computer network. The difference is that we design
the switch to run on PCIe bus instead of Ethernet. Observ-
ing verb behaviors directly allows us to not only measure
the network resource consumption (e.g., BPS) but also gauge
the utilization of RDMA-specific microarchitecture resources,
including PCIe and RNIC processing capacities.

Our third idea is to repurpose the RNIC’s congestion con-
trol mechanism to facilitate RDMA-friendly rate limiting.
Given the kernel and CPU bypass characteristics of RDMA,
traditional software-based rate limiters are off the table due
to the CPU overheads and the additional latency. Software-
based rate limiters are also ineffective in limiting the data
receiver side when one-sided operations are used. Moreover,
RDMA deployment stems from a lossless network, and cur-
rent RNICs cannot consistently ensure optimal retransmission
performance across all scenarios [21, 31, 64]. Therefore, sim-
ply discarding excessive RDMA packets in hardware [16]
can cause RDMA performance degradation and is not an op-
tion. Our key observation is that we already have a native
hardware rate limiting mechanism implemented in modern
commodity RNICs for congestion control purposes (i.e., DC-

Programmable 
Intelligent PCIe Switch

Harmonic
Kernel Driver

Harmonic 
Daemon

Tenant 
Data verbs

Control verbs

(1)

(3)
(2)

Tenant RNIC

Figure 3: Harmonic overview.

QCN [64]). These rate limiters react to network congestion
feedback, known as congestion notification packets (CNPs)
in DCQCN, to reduce the rate of RDMA connections. We
can re-purpose these rate limiters for performance isolation
purpose by proactively generating and sending CNPs to mod-
ulate the RDMA resource usage per tenant. While this method
does consume some processing cycles (CPU cycles in our
prototype), the overheads are considerably reduced compared
to software-based rate limiters (§6.5).
Harmonic’s deployment model and workflow. Harmonic
assumes that the cloud provider owns the RDMA kernel
drivers to intercept control verbs. This is standard for con-
tainerized RDMA clouds, para-virtualized VM clouds and mi-
crokernel virtualization clouds. We didn’t consider the RDMA
virtualization scheme that solely depends on SR-IOV, and we
show SR-IOV itself is not enough to provide performance
isolation (§6.3). In summary, Harmonic can handle the (2),
(3) and (4) scenarios in Figure 2. We do not consider the
virtualization scenario (1) because RNIC isolation is unneces-
sary on the bare-metal setting. We implement our prototype
with a temporary focus on scenario (2), but it should be easily
generalized to both (3) and (4) because we only rely on the
modification to the RDMA kernel drivers without touching
other system software components.

Figure 3 presents the system architecture of Harmonic.
Harmonic has two main components: the Harmonic daemon
and the Programmable Intelligent PCIe Switch (PIPS) with
Harmonic kernel driver. Harmonic kernel driver is a modi-
fied version of the standard RDMA kernel driver that keeps
track of control verbs issued per tenant and (1) generates the
address-to-tenant/object mappings to PIPS. PIPS not only
forwards RDMA traffic as a regular PCIe switch, but inter-
cepts PCIe traffic to keep track of data verbs issued per tenant
as well. Harmonic daemon is a privileged process that runs
on the host OS or hypervisor. It (2) polls tenant’s data verb
behavior statistics from the PIPS and (3) sends congestion
feedback packets to each tenant to modulate their RDMA
resource usage. All these components are trusted and will not
be tempered by the tenants.
Harmonic’s benefits. Harmonic has several key benefits
compared to existing RDMA performance isolation solutions.
First and most important, Harmonic takes microarchitecture
resource usage into account and thus provides stronger isola-
tion. Harmonic observes both data and control verbs, in the
meantime, restricts tenant resource usage correspondingly.



Table 1: An example for RDMA performance abstraction.

Name # of QPs # of WQEs # of MRs # of CQs # of CQEs MR Size BPS DRPS CRPS Prio
Alice 128 16384 128 16 8192 2 GB 10 Gbps 30 Mrps 1 Krps 0

This is different from simply observing network bandwidth
usage. Second, Harmonic requires no modification of applica-
tions. There’s no need to adjust application libraries, allow-
ing for straightforward integration with application binaries.
Third, our approach delivers native RDMA performance for
public cloud usage. Applications’ data verbs continue to by-
pass system software entirely, and the only latency overhead
comes from the PCIe switch, which is minimal (§6.5).
Harmonic’s performance abstraction. Our performance
abstraction includes a set of metrics that enable tenants to
accurately describe their expected RDMA network perfor-
mance needs. At the same time, it allows us to design the
performance isolation mechanisms to guarantee the metrics
to tenants. In addition to the conventional BPS metric, our
performance abstraction considers per-tenant RDMA-specific
resources, including the number of QPs, CQs, MRs, and the
total MR size. Application developers have direct control over
these RDMA-specific architectural resources, because they di-
rectly interface these resources in the application source code.
The resources in our abstraction are also vendor-agnostic:
they are specified as part of the verb library [2], which work
across different vendors’ RNICs. It is important to note that
our performance abstraction intentionally excludes explicit
consideration of RNIC microarchitecture resources, such as
on-NIC cache and NIC processing units. These components
are vendor-specific and generally opaque to RDMA develop-
ers.

Moreover, our performance abstraction includes the typi-
cal resources other performance isolation solutions use, such
as Request Per Second (RPS). We categorize RPS into data
verbs RPS (DRPS) and control verbs RPS (CRPS) as they
serve different purposes. While a more granular categoriza-
tion of DRPS into sub-types such as ATOMIC RPS or SEND
RPS is conceivable, we have chosen to opt for a normalized
RPS, balancing precision with user-friendliness. The analogy
is that CPU vendors use cycles instead of instructions per
second as the performance metric because instructions can
have variable lengths. To illustrate, Table 1 presents an exam-
ple detailing the guaranteed metrics for a tenant within this
framework. Let us assume one ATOMIC request consumes
the resources equivalent to 3 SEND requests. Alice, with
30M DRPS, therefore can achieve up to either 10M ATOMIC
requests per second or 30M SEND requests per second. It
should be noted that DRPS and BPS guarantees are offered
in a mutually exclusive "OR" fashion. For instance, a ten-
ant consistently posting SEND requests with large message
sizes will encounter BPS throttling before reaching the DRPS
limit. Next, we present the design and implementation details
of Harmonic that uses the above performance abstraction to
provide RDMA performance isolation.

Fmt Type Payload Size
Last & First

DW BE
Address[63:32]

Byte 0

Byte 4

Byte 8

Byte 12 Address[31:2]

7-015-823-1631-24

Figure 4: TLP header format where the gray blocks represent unused
fields for PIPS. DW BE denotes dword byte enable.

FMC+ to PCIe RP

PCIe Switch (M2)

TL
P

 A
n

al
yz

er
 (
M
5

) Host

RNIC

FPGA

RNIC-to-Host

Host-PIPS
Statistics

Mapping Manager 
(M4)

Host-PIPS Comm. Interface (M3)

Host-to-RNIC

PCIe PHY

1

2

3

Downstream Port

U
p

st
re

a
m

   
   

   
   

   
Po

rt

K
er

n
el

 D
ri

ve
r 

(M
1

)

Figure 5: Programmable Intelligent PCIe Switch (PIPS) internal
architecture. The dash line indicates asynchronous TLP analysis,
decoupled with PCIe switch forwarding path.

4 Programmable Intelligent PCIe Switch
To monitor tenant’s verbs behavior through PCIe, we develop
a Programmable Intelligent PCIe Switch (PIPS) that can for-
ward PCIe Transaction Layer Packets (TLPs) at line rate and
perform real-time RDMA-centric inspections. Given address-
to-object/tenant mappings captured in kernel driver, we ex-
tract the physical address of the host memory from the RNIC-
issued DMA read/write TLP header (Address field in Figure 4)
and utilize it to identify both the object and the tenant associ-
ated with this TLP. This capability enables us to accurately
measure per-tenant RDMA resource utilization.

We build PIPS using AMD/Xilinx Versal VCK190 Eval-
uation FPGA board with 4K lines of RTL Verilog code and
various AMD/Xilinx IPs (Intellectual Property Core). PIPS
has five Modules (Figure 5): (M1) kernel driver, (M2) PCIe
switch, (M3) host-PIPS communication interface, (M4) map-
ping manager, and (M5) TLP analyzer. The kernel driver
maintains latest address-to-object/tenant mappings. The PCIe
switch routes TLPs to their corresponding destinations. Host-
PIPS communication interface and mapping manager handle
the synchronization of address-to-object/tenant mappings be-
tween host and PIPS while collecting RDMA traffic statistics.
The TLP analyzer inspects the TLP headers of RNIC-initiated
DMA read/write requests and matches them with the address-
to-object/tenant mappings.



4.1 PCIe Configuration and Routing Logic

The PCIe switch (M2) is the key component of Harmonic. It
consists of routing logic and two instances of Xilinx Versal
ACAP Integrated Block for PCI Express IPs [8]. The PCIe
PHYs in the two instances are configured as PCIe switch’s
upstream port and downstream port, respectively. Figure 5
demonstrates Harmonic architecture: the upstream port is di-
rectly connected to the host using the PCIe edge connecter of
FPGA, and the downstream port leverages the FMC+ expan-
sion connector with a PCIe Root FMC+ plug-in module [23]
to be connected to RNIC.

4.2 Address-to-Object/Tenant Mappings

Maintaining real-time address-to-object/tenant mappings in
PIPS is essential for precisely monitoring RDMA resource
usage per tenant. These mappings can change when appli-
cations create, delete, or modify objects. The change of the
mappings is triggered by control verbs posted by RDMA ap-
plications, which are processed by the kernel driver (M1).
Therefore, we modify a legacy NVIDIA RNIC kernel driver
(e.g., mlx5_ib.ko and ib_uverbs.ko) to track address-to-
object/tenant mappings. We use container’s process ID as
tenant ID. When a tenant calls a control verb, the Harmonic
kernel driver first traverses the process tree in the kernel to find
the tenant ID. It then records a mapping entry for this control
verb behavior, including tenant ID, the type (e.g., QP creation),
the size and start physical address of the object. The RNIC
kernel has already translated the virtual addresses for these
RDMA objects to physical addresses for its DMA purpose,
and we can directly use these translated physical addresses
to populate our mapping entries. For application payloads,
we also record the payload registered flags (e.g., ATOMIC
enabled). This information helps us determine the type of pay-
load regions accessed by tenants in PIPS. The kernel driver is
responsible for updating address-to-object/tenant mappings
on PIPS by embedding an operation code in mapping entry to
signal insert or delete operations to PIPS. We show detailed
format and contents of both address-to-object/tenant mapping
and statistics entry in Appendix B.

4.3 Mapping Synchronization and Management

We obtain address-to-object/tenant mappings from the kernel
driver and then utilize the host-PIPS communication interface
(M3) and the mapping manager (M4) to continuously update
and manage the most up-to-date mappings in PIPS. This is
crucial for later use by the TLP analyzer.

The host-PIPS communication interface receives and
parses the MMIO write requests from host to update address-
to-object/tenant mappings in the PIPS mapping manager ( 1 ,
2 ). Out of performance (i.e., achieving real-time monitoring)
and implementation complexity considerations, the mapping
manager employs a hashing-based mechanism and maintains
a hierarchical mapping storage system, consisting of a first-
level (L1) direct-map scheme and a second-level (L2) linked-

list slot pool. The mapping manager utilizes a double-hash
strategy and leverages two distinct hash functions for calcu-
lating the hash values of the address field as the indexes to
L1 and L2, respectively. Note that L2 is only used when colli-
sion happens in L1. In this case, each mapping entry in L1 is
treated as the head of a linked list, with the remaining entries
being stored in L2 linked-list slot pool. In addition to map-
ping management, the host-PIPS communication interface
also generates completion TLPs with associated statistics as
payload, when the host polls RDMA traffic statistics through
MMIO read requests ( 3 ).

4.4 Efficient TLP Analyzer

The TLP analyzer (M5) is responsible for extracting the tar-
get physical address in TLP headers from RNIC-issued DMA
read/write requests ( 1 ). When a TLP arrives at PIPS, it du-
plicates the TLP and sends one copy to the TLP analyzer for
analysis, while simultaneously forwarding the original TLP
to its destination. In addition, the TLP analyzer implements
an efficient search engine to collaborate with the mapping
manager, which can perform search operation ( 2 ) in paral-
lel with insert and delete operations, taking the hash value
of physical address in TLP header as search key. Since the
hash collision rate is low, the average search time is only 7
cycles including the latency for interconnection and updat-
ing statistics.Upon a mapping search hit, the TLP analyzer
computes the statistics entry offset based on TID, flags, and
type found in retrieved mapping entry, along with the direc-
tion of current TLP (i.e., RNIC DMA read/write Host). Then
it updates the statistics entry at this determined offset ( 3 ).
With this approach, PIPS maintains an accurate record of both
the access count and the volume of bytes accessed for each
object and tenant, while simultaneously identifying the type
and flag associated with the accessed memory.

5 RDMA-friendly Rate Limiting
Harmonic daemon is responsible for modulating per tenant’s
resource usage. It achieves this by employing two distinct rate
limiting techniques for data verbs and control verbs.

5.1 Data Verbs Rate Limiting in Harmonic Daemon

The Harmonic daemon takes the proactive approach of creat-
ing and injecting Congestion Notification Packets (CNPs) to
control tenants’ rate. Because commodity RNICs automati-
cally generate CNPs within the ASIC without providing an
interface to users, the Harmonic daemon forges CNPs and
sends them to the data sender side of tenants. Forging CNP
needs the source and destination IP addresses as well as the
remote QP number (QPN). Harmonic daemon obtains this
information during the setup of connections. When tenants
create or modify QPs, these control verbs are intercepted
by Harmonic kernel driver. Subsequently, Harmonic kernel
driver sends an event to notify Harmonic daemon that a new
connection is set up, including both IP addresses and the QPN.



Harmonic daemon decides which tenant should be paced
and at what specific rate. Harmonic daemon first keeps polling
statistics collected by the PCIe switch through MMIO reads.
These statistics include BPS and RPS of various types of
RNIC-initiated DMA requests, such as fetching WQEs, fetch-
ing QP context, and writing payload into host memory. Then,
Harmonic daemon calculates per tenant NIC BPS, PCIe BPS,
DRPS consumption, as well as cache miss frequency based
on the collected statistics. It sums up tenant’s DMA accesses
to various types of payloads (e.g., WRITE) to calculate NIC
BPS and DRPS, and sums up tenant’s DMA accesses to vari-
ous types of RDMA metadata (e.g., QP contexts) to calculate
cache miss frequency. For DRPS, we normalize different
types of RDMA requests into the same unit, based on an esti-
mated cost ratio for various types of data verbs. We conduct
an offline profiling to estimate this cost ratio by running a set
of micro-benchmarks. We run perftest [1] to send requests
of minimal sizes in a batch to measure the maximum rate of
different data verbs, and the 1/rate is the cost. In practice, we
normalized WRITE and SEND operations to 1 unit, READ
to 1.1 unit and ATOMIC to 3 units. Given the accurate re-
source usage per tenant, Harmonic daemon next compares
each tenant’s current usage and its allocation. Harmonic dae-
mon directly uses NIC BPS and DRPS from tenant’s profile
(e.g., Table 1), and calculates tenant’s PCIe allocation using
dominant resource fairness model [18]. Harmonic daemon
analyzes guarantee profiles of all tenants on the same host
and identifies the dominant resource among them. Then Har-
monic daemon distributes the PCIe bandwidth based on the
allocation of this dominant resource. For example, given a
network capacity as 25 Gbps bandwidth and 30M DRPS, let
us assume tenant A needs 15 Gbps bandwidth and 10M DRPS
and tenant B needs 5 Gbps and 15M DRPS. The dominant re-
source therefore is bandwidth for tenant A ( 2

3 ) and DRPS for
tenant B ( 1

2 ). We next allocate the available PCIe bandwidth
to tenants A and B following the proportion of 4:3 (i.e., 2

3/
1
2 ).

When a tenant uses more BPS/DRPS/PCIe bandwidth than
its allocation, we send CNPs to data sender ends of this ten-
ant’s connections. Harmonic daemon currently applies a sim-
ple strategy to compute the CNP rate. Harmonic sends 1-4
CNPs in a batch after Ti intervals (in microseconds) to man-
age tenants’ rate. Equation 1 shows how interval is updated
based on the measured rate and target rate. We use two heuris-
tic parameters Tmin and Tbasic in practice. Tmin is a minimal
interval threshold to avoid excessively frequent adjustments,
which could lead to unstable rate or even cause performance
anomaly. Tbasic serves as a multiplier, reflecting the intrinsic
response sensitivity to resource overuse. Tuning these values
can adjust the strictness of policy, as a small Tbasic punishes
tenants that overuse resources more strictly.

Ti = max(Tmin,Tbasic ∗ (1.0−
Rcurrent −Rtarget

Rtarget
)) (1)

We specially handle on-NIC cache resources due to their

unique characteristics. While we can measure tenant’s cache
miss statistics by tracking the number of PCIe access to those
metadata (e.g., QP context), we do not set a cache miss thresh-
old for each tenant. This decision is because a higher cache
miss rate in one tenant does not necessarily indicate an ex-
cessive use of cache resources. Instead, we monitor overall
RNIC cache contention and slow down tenants accordingly.
When Harmonic daemon observes severe cache misses, Har-
monic starts to slow down tenants with the lowest priority.
For tenants with the same priority, we slow down them us-
ing the dominant resource fairness policy mentioned above.
We acknowledge that there are alternative policies, such as
monitoring a tenant’s active QPs/MRs as the basis for rate-
limiting decisions. However, we find that our straightforward
policy is already effective in providing isolation when cache
contention arises.

5.2 Control Verb Rate Limiting in Harmonic Drivers

Control verbs rate limiter first needs to limit the capacity
of control verbs (akin to in-flight packets) for each tenant,
including the maximum number of QPs and MRs allowed per
tenant. We record tenants’ control verbs guarantee profiles as
a linked list in Harmonic kernel driver. When a new tenant is
created, we invoke Harmonic kernel driver to register a new
control profile and insert it to the linked list. Whenever this
tenant calls a control verb, Harmonic driver checks its current
resource usage and the profile, determining if this control verb
should be rejected or not.

We also need to limit the rate for control verbs to prevent
tenants from excessively updating hardware status. Frequent
updates have the potential to induce RNIC cache thrashing, as
discussed in prior work [29]. We record timestamps for each
tenant in our defined structure when they issue control verbs.
When a tenant calls a control verb, we compare the current
timestamp and the previously recorded timestamps. If the
tenant is making control verb calls at a rate that exceeds their
allocated rate, we introduce a sleep delay. We choose to slow
down tenants through sleep instead of returning an explicit
error. This way, Harmonic remains transparent to tenants. If
we directly return errors to applications, it would necessitate
error code checks and retries in applications.

6 Evaluation
6.1 Testbed Setup

There are two servers in our testbed, each equipped with one
NVIDIA ConnectX-6 Dx (CX-6) 25 Gbps RNIC. Our FPGA-
based programmable PCIe switch supports up to PCIe Gen 4
with 8 lanes with up to 128 Gbps PCIe bandwidth. Neverthe-
less, there are no NVIDIA 100 Gbps RNICs that support PCIe
Gen 4 with 8 lanes. We therefore use Harmonic to enhance
our CX-6 25 Gbps RNIC. RNICs of two hosts are directly
connected without a network switch. The BPS capacity of
our RDMA endhost is 25 Gbps. We use the standard RDMA
benchmark tool, perftest [1], to measure the DRPS capacity,



5 10 15
Time / second

0.0

2.5

5.0

7.5

10.0

DR
PS

 / 
M

rp
s

WRITE (PIPS)
ATOMIC (PIPS)
READ (PIPS)

WRITE (App)
ATOMIC (App)
READ (App)

(a) Measurement of operation types

0 5 10 15
DRPS Cap / Mrps

0

5

10

15

20

M
ea

su
re

d 
DR

PS
 / 

M
rp

s

App
PIPS
Difference

(b) Measurement of RPS

0 5 10 15 20
BPS Cap / Gbps

0

10

20

30

BP
S 

/ G
bp

s

Ideal
Harmonic
Difference

(c) Control of BPS

0 10 20 30
DRPS Cap / Mrps

0

10

20

30

40

DR
PS

 / 
M

rp
s

Ideal
Harmonic
Difference

(d) Control of RPS

Figure 6: Measurement and control of RDMA traffic. App denotes the performance metrics as reported by perftest.

and the result is ∼30 M DRPS.
Both servers are running Ubuntu 20.04. Harmonic kernel

driver is built upon MLNX_OFED-5.8.1.1.2.1 [42], with a
total of 658 lines of C code modifications. Harmonic daemon
is implemented in C/C++ with a total of 2537 lines of code.

6.2 Measurement and Control of RDMA Resources

We first use microbenchmarks to demonstrate that Harmonic
can accurately measure tenants’ verbs behaviors and limit
their resource usage. We let a tenant run different data verbs
workload from perftest in three time periods. It generates
WRITE traffic, ATOMIC traffic, and READ traffic, each for 5
seconds. We record the DRPS measured by the perftest per
second and compare it with the request rate measured by PIPS.
As shown in Figure 6a, PIPS successfully identifies the types
of data verbs and measures the request rates of each workload
accurately. Figure 6b shows that Harmonic also accurately
measures tenants’ behaviors across different request rates.

Next, we evaluate our CNP-based RDMA-friendly rate lim-
iter. We use perftest to generate workloads that extensively
consume BPS and DRPS resources. We let Harmonic to set
different capacity for these two resources. We measure the
achieved BPS/DRPS and compare them with the capacity.
Figure 6c and Figure 6d show that our rate limiter can ac-
curately control a tenant’s BPS and DRPS. It is worthwhile
to note that we observe that Harmonic daemon can react to
resource overuse within one millisecond. As discussed in
Equation 1, a stricter Tbasic or Tmin leads to fast reaction (i.e., a
few hundreds of microseconds) while it may also hurt overall
performance. In practice, we set Tbasic to 500 us and Tmin to
200 us, which we find already sufficient to enforce isolation.

6.3 Harmonic End-to-end Evaluation

We use the state-of-the-art RDMA performance isolation test
suite, Husky [29], to perform end-to-end evaluation of Har-
monic. Husky includes a set of victim traffic patterns that are
sensitive to different types of resource contention, and four
sets of attacker traffic patterns that exhaust four types of re-
sources: RNIC BPS, RNIC processing capacity, RNIC cache,
and RNIC PCIe bandwidth. We observe that the reliable con-
nection retransmission attack described in Husky (Section
3.3) that exhausts RNIC processing capacity has already been
fixed in the latest NIC firmware, and the RNIC control verbs

cache attack only has a negligible effect on 25 Gbps RNIC.
Harmonic passes all other Husky’s tests with a tolerance level
α = 20%, indicating a tenant’s traffic will be no less than 80%
of its guarantee in the worst case, which is substantially better
than all existing solutions. For most tests, Harmonic effec-
tively safeguards tenants to achieve their guarantees (i.e., less
than 5% difference). We next use a set of typical workloads
from Husky as the case study to demonstrate why existing
solutions fail and how Harmonic satisfies tenants’ guarantee.

For each case study, we also compare our results with three
baselines: (1) SR-IOV, which allocates individual virtual func-
tion (VF) for each tenant to use [47]; (2) Separate hardware
traffic class (HW TC), which is supported by modern RNICs
to dedicate a RNIC traffic class to specific tenant for quality-
of-service (QoS) control and performance isolation [45]; (3)
Justitia, a recent software-based isolation solution for RDMA
networks [62]. Note that Justitia requires tenants to use spe-
cific userspace libraries, so a malicious tenant can circumvent
Justitia’s control by not using these Justitia’s libraries. How-
ever, we still want to evaluate Justitia’s isolation mechanism
(which includes its rate limiter design).

We allocate two tenants, named Alpha and Beta, on the
same pair of hosts. Our RDMA hosts support up to 25 Gbps
and ∼30 M DRPS. We thus set our isolation goal to be that
both Alpha and Beta are guaranteed with 12.5 Gbps and 15 M
DRPS. For each attack, we let Alpha run a Husky victim traf-
fic that is sensitive to a specific type of resource, and we let
Beta run an attacker traffic targeting the specified resource.
Results are shown in Figure 7 to Figure 10. No Interference
means running Alpha or Beta alone with no isolation enabled,
and No Protection means Alpha and Beta are running together
without any isolation. For a fair comparison, we configure
SR-IOV and HW TC to assign one virtual function or traf-
fic class to each tenant, respectively. Justitia currently only
supports fair share and does not provide any QoS guaran-
tee. SR-IOV and HW TC only support RNIC bandwidth (i.e.,
BPS) guarantee. We therefore configure each virtual func-
tion with 12.5 Gbps for SR-IOV. HW TC currently does not
support floating-point rate configuration, and we thus config-
ure both tenants with 12 Gbps guarantee and reserve 1 Gbps
for potential traffic burst. For each figure, we use a dashed
red line to denote the guarantee, a gray dashed line to de-



No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25
Ba

nd
wi

dt
h 

/ G
bp

s Alpha
Beta

Figure 7: NIC bandwidth contention.
No Interference

No Protection HW TC SR-IOV Justitia
Harmonic

0

10

20

30

DR
PS

 / 
M

rp
s

Alpha
Beta

Figure 8: Processing capacity contention.

No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25

Ba
nd

wi
dt

h 
/ G

bp
s Alpha

Beta

Figure 9: RNIC cache contention.

No Interference
No Protection HW TC SR-IOV Justitia

Harmonic
0

5

10

15

20

25

Ba
nd

wi
dt

h 
/ G

bp
s Alpha

Beta

Figure 10: PCIe bandwidth contention.

note the tolerance bar (10 Gbps and 12 Mrps). We use a blue
dash line in Figure 8 to show the victim performance since
it is originally smaller than the guarantee and should not be
affected.

RNIC BPS contention. We first conduct BPS contention
experiment. Alpha sets up a single connection and keeps
sending 64KB WRITE verbs, and Beta sets up 16 connections
and keeps sending 4KB WRITE verbs in a batch. Both Alpha
and Beta consume almost all the RNIC BPS when running
alone. When running together without isolation, Beta occupies
more BPS since it has more connections. When isolation is
enabled, we observe that all existing solutions and Harmonic
successfully satisfy all tenant’s guarantees. This shows that
RNIC BPS is accurately monitored and controlled by all the
existing solutions and Harmonic.

Processing capacity contention. We let Alpha run a
throughput-sensitive Husky victim, which uses 36 connec-
tions and keeps issuing 64-byte messages. Beta uses 64
connections to keep generating expensive 8-byte ATOMIC
traffic to exhaust RNIC processing capacity. We normalize
DRPS based on our profiling results, which show that a single
ATOMIC operation costs roughly three times as WRITE op-
erations. Figure 8 shows the DRPS for Alpha and Beta. Note
that Alpha does not use all its traffic demand, so the isolation
goal is that Alpha’s performance should not be affected when
Beta joins (shown as the blue dashed line). When no isolation
is enabled, Beta’s ATOMIC workloads exhaust the RNIC pro-
cessing capacity and cause Alpha’s performance to drop by
38%. HW TC does not react to this attack effectively because
Beta only consumes a small amount of BPS (i.e., 6.7 Gbps),
which is substantially lower than the rate limit. Beta’s rate
therefore is not paced by HW TC, and Beta exhausts the RNIC
processing capacity. When SR-IOV is enabled, Beta’s rate is

not reduced as well, and we observe Alpha’s rate drops. Since
SR-IOV implementation details are not publicly available, our
best guess is that this workload may cause some scheduler
issues in SR-IOV implementation. Even though Justitia con-
siders processing capacity in its design, it is agnostic to the
type of verbs and thus performs even worse. It does reduce
Beta’s ATOMIC traffic, but Alpha’s performance is even more
severely degraded. This is because Justitia treats these verbs
equivalently without accounting for the actual resource con-
sumption of expensive ATOMIC verbs. Our observation of
existing solutions is aligned with Husky’s results. Harmonic
carefully considers the expensive costs of ATOMIC requests
and limits Beta’s rate accordingly, reserving adequate process-
ing capacities to achieve Alpha’s guarantee while satisfying
Beta’s requirement.

RNIC cache contention. We let Alpha run a Husky victim
that is sensitive to on-NIC cache contention, which keeps gen-
erating 8-byte WRITE requests in batches across 512 different
memory regions. Beta runs a Husky attacker that uses 4 con-
nections to repeatedly issue single 512-byte WRITE request
to 16K different memory regions to exhaust the on-NIC cache
resources. Figure 9 shows that when cache contention occurs,
the available RNIC BPS is less than 25 Gbps. Even though
both SR-IOV and HW TC reduce Beta’s BPS consumption
to less than 12 Gbps, Alpha’s performance is only improved
by a minimal extent. We suspect that under severe cache
contention, the effectiveness of SR-IOV and HW TC is also
affected. For example, the severe cache miss may also slow
down the SR-IOV and HW TC scheduling process. Though
the current design of Justitia is cache agnostic, it successfully
satisfies Alpha’s guarantee while leading to a drastic drop
in Beta’s performance, making it not satisfy the guarantee
even with a 20% tolerance level. This is probably because



Justitia identifies both applications as throughput-sensitive
applications and schedules them equivalently, while Alpha
issues smaller messages in batch and therefore occupies more
Justitia’s tokens. Harmonic detects the cache contention and
measures the available BPS. It then allocates the reduced
available BPS to Alpha and Beta fairly. This makes both
Alpha and Beta achieve the guarantee within the tolerance
level. Note that the strict guarantee is impractical in this case
because the bottleneck is the RNIC cache.
PCIe contention. Though our testbed supports up to ∼ 64
Gbps PCIe bandwidth. We configure our FPGA-based PCIe
switch to only support 32 Gbps PCIe bandwidth for our
25 Gbps RNIC. This PCIe BW

RNIC BW = 32
25 ratio emulates scenar-

ios for higher speed RNICs (e.g., 128
100 and 256

200 ), where PCIe
bandwidth can be one of the bottlenecked microarchitecture
resources. We let Alpha run the same application as in the
Cache contention case. We let Beta run the PCIe attack in
Husky, which keeps sending 257-byte WRITE that triggers
several DMAs to maximize PCIe consumption. As shown in
Figure 10, the available RNIC BPS therefore is capped by
the PCIe bandwidth and is substantially smaller than 25 Gbps.
Both SR-IOV and HW TC successfully reduce Beta’s rate and
improve Alpha’s performance, but to a limited extent. The
key reason is that given the same amount of RNIC BPS con-
sumption, Beta consumes more PCIe bandwidth than Alpha
and should be paced more in this situation. Similar to what
is observed in the above cache contention scenario, Justitia
reduces Beta more because of its larger message size and only
satisfies Alpha’s guarantee. Harmonic’s hardware monitor
allows us to accurately track each tenant’s PCIe bandwidth
consumption and allocate PCIe bandwidth accordingly based
on tenants’ guarantee. For example, each tenant is allowed to
consume half of the PCIe bandwidth (i.e., roughly 16 Gbps)
in this situation.

6.4 Performance Isolation for End-to-End Applications

We evaluate how Harmonic provides performance isolation
for a real application. We use an RDMA-based Redis [63]
as our tenant workload. We use the same Husky attack work-
loads described in the previous section as attackers. Similarly,
our isolation goal is to enforce fair share resource allocation
between the Redis application and the attackers. We also en-
able both SR-IOV and HW TC as a comparison. We do not
evaluate Justitia’s performance for two reasons: (1) Jusitia
needs application modification to fully support its isolation
and is not secured for real cloud deployments; (2) Justitia
does not support READ operations in the latest drivers.

Redis over RDMA implements an RDMA backend trans-
port to accelerate Redis key-value store and has been large-
scale deployed in industry [63]. We use this redis-benchmark
application to generate 1KB get and set workloads, and mea-
sure its average application QPS. This benchmark can achieve
about 450K QPS, consuming 4.2 Gbps BPS and 1.2 Mrps
DRPS. This is less than its performance guarantee, so the

No Attack BW Processing Cap Cache PCIe0
100
200
300
400
500

Pe
rfo

rm
an

ce
 (K

QP
S)

No Attack
No Isolation

SR-IOV+HW TC
Harmonic

Figure 11: Performance of Redis over RDMA across different attack
types and isolation schemes.

goal is that Redis’s performance should not be affected by
any attacker. We then run those four types of attacks without
isolation, with SR-IOV + HW TC, and with Harmonic. As
shown in Figure 11, all four types of attack successfully ex-
haust specific types of RDMA resources and cause a drastic
Redis performance drop. When isolation is enabled, we ob-
serve that both SR-IOV + HW TC and Harmonic successfully
provide protection against an attacker that tries to exhaust
network bandwidth. Though SR-IOV + HW TC does not
consider processing capacity, Redis achieves its guarantee
under processing capacity contention with SR-IOV + HW
TC. This is probably because Redis workload is more robust
to the processing capacity contention. However, SR-IOV +
HW TC fails to provide sufficient isolation when cache or
PCIe bandwidth is contended. Harmonic proactively moni-
tors these microarchitecture resource contentions and applies
rate limit according to per tenant’s usage. Harmonic therefore
successfully maintains Redis’s performance within the toler-
ance level when on-NIC cache or PCIe bandwidth is under
contention performing 1.3x∼1.4x better than the combination
of two state-of-the-art isolation solutions.

6.5 Overhead Analysis

Hardware and PCIe costs. Our hardware cost analysis based
on the implementation report from AMD Vivado [9] shows
that PIPS, with an internal reference clock frequency set at
250 MHz, consumes 8,571 LUTs (i.e., 0.95% of VCK190
FPGA LUT resources), and 554 BRAMs (i.e., 57.29% of
VCK190 FPGA BRAM resources) mainly used to store host
mapping entries.

We also measure the cost of PCIe bandwidth for updat-
ing mappings and collecting statistics between the host and
PIPS. RDMA application does not frequently invoke control
verbs during data transmission, the mapping updates con-
sumption is therefore negligible. During our evaluation of
various Husky’s attack workloads, we observe that the map-
ping updates only consume no more than 8 Mbps (0.025%)
extra PCIe bandwidth. The extra PCIe bandwidth consump-
tion caused by polling statistics is determined by the polling
frequency. In practice, we poll these statistics every 100 us
and we find it already sufficient to achieve an accurate rate
control and enforce performance isolation. The per tenant
PCIe bandwidth consumption is 64 Mbps for host-to-switch
direction and 76.8 Mbps for switch-to-host direction, which



Table 2: Network performance overhead.

Latency (us) Max. Bandwidth Max. Throughput
64B 64KB (Gbps) (Mrps)

Baseline 3.3 50.4 23.0 28.1
Harmonic 5.6 52.6 22.8 28.1

can be comfortably accommodated by the bandwidth slack be-
tween PCIe and RNIC line rate. The detailed calculation and
analysis is in Appendix C. Harmonic daemon currently only
consumes 33.5% of a single CPU core and scales with negli-
gible CPU usage increment. The CPU usage is determined by
the frequency of polling statistics.
Network performance overheads. We run microbenchmarks
using perftest to measure the latency, achieved bandwidth,
and request throughput with and without Harmonic to analyze
network overheads introduced by Harmonic. For brevity, we
show the results of RDMA READ in Table 2. We demonstrate
the latency penalty under different packet sizes in Figure 12.
While there is a marginal increase in latency overhead with
larger packet sizes, Harmonic adds less than 2 us to the round-
trip latency across all packet sizes. This is mainly because our
PCIe switch is implemented in FPGA, which is less perfor-
mant than traditional ASIC-based PCIe switches on the host
and SmartNICs. Furthermore, employing PCIe extender card
and FMC+ to PCIe root module for the purpose of full-system
operation can also incur additional latency. Note that our mon-
itoring feature is decoupled with the PCIe switch forwarding
functionality, so the monitoring feature does not contribute
to this overhead at all. Besides, Harmonic introduces only
negligible drops in network bandwidth or request throughput.

To summarize, Harmonic’s overhead is negligible for high-
speed RDMA networks. Additionally, we believe that the
monitoring and rate limiting functions inherently should
be integrated into future generations of RNICs. Overheads,
such as the extra PCIe consumption and the FPGA’s la-
tency, will be further eliminated when these functions are
implemented within RNIC’s ASIC. For example, NVIDIA
Bluefield-2 SmartNIC has an embedded PCIe switch that
routes RDMA traffic among RNIC ASIC, embedded ARM
CPUs, and host [44], and only introduces nanosecond-level
latency overhead [59]. We therefore believe Harmonic’s PIPS
overhead can also be mostly eliminated by implementation in
ASIC and being integrated into RNIC.

7 Discussion
Scaling to higher-speed network. We believe our solution
is scalable to 100/200 Gbps RNICs because the overhead of
Harmonic (i.e., FPGA resources usage, extra PCIe bandwidth
consumption) does not increase with higher network capacity.
The concerns may fall on whether TLP analyzer can keep up
with higher PCIe bandwidth and whether the mapping man-
ager scales to store more mapping entries. Our TLP analyzer
can handle higher PCIe bandwidth, as the average search and
update time of our design for one mapping entry is 7 cycles
at 250MHz frequency. This can be even further minimized

101 103 105 107

Packet Size / B

0

2000

4000

6000

Ro
un

d 
Tr

ip
 L

at
en

cy
 / 

us

w/o Harmonic
Harmonic

1

2

3

4

Ro
un

d 
Tr

ip
 

 L
at

en
cy

 O
ve

rh
ea

d 
/ u

s

Overhead

Figure 12: Latency overhead across different packet sizes. The green
and orange lines present the absolute round trip latency with left
y-axis when packet size differs. The blue line demonstrates the round
trip latency overhead is less than 2 us using the right y-axis.

with increased parallelism. The architecture of the mapping
manager can easily be extended to a multi-hashing hierar-
chy, thereby facilitating the storage of a greater number of
mappings with only a marginal increase in search time. Addi-
tionally, concepts from match-action table of P4 switch and
more advanced mapping management like binary search or
Cuckoo hashing can be implemented on top of PIPS to further
reduce memory overheads. In the meanwhile, the scalability
concerns are notably mitigated when considering an ASIC
implementation with optimized logic interconnections and
resource utilization while running at a higher frequency.

Is our performance abstraction easy for users to under-
stand? Our performance abstraction is more complex than
traditional performance abstraction which only considers net-
work bandwidth. We believe this is necessary because RDMA
network is indeed more complex and application develop-
ers are already interacting with this performance abstraction
when developing RDMA programs [26, 27]. We only extend
the abstraction to include more architectural resources that
users can directly control, such as the number of QPs. These
extended metrics are no difference from the number of vCPUs
or the size of memory in today’s cloud VMs specifications.
We believe developers should be aware of these resources
in order to write performant and predictable RDMA applica-
tions.

Deployability of Harmonic. Harmonic requires both hard-
ware and software modifications to existing clouds. From the
perspective of hardware, Harmonic uses PIPS as a prototype
to measure per-tenant RDMA resource consumption at run-
time. In practice, the best implementation entry point should
be within the RNIC regarding performance and hardware
costs. One leading technology enterprise is currently integrat-
ing part of our designs into their next-generation RNIC. In
terms of software, Harmonic needs to have the full control
of the RDMA kernel drivers to manage control verbs for all
tenants. Containerized clouds have already provided such
control since all tenants are sharing the same kernel man-
aged by cloud operators. Harmonic software therefore can
be deployed in containerized clouds without any barriers. In



VM-based clouds, native SR-IOV does not support manag-
ing control verbs for tenants since guest kernel drivers can
directly communicate with RNICs. Extra modifications to
both guest kernel drivers and hypervisors are required to de-
ploy Harmonic in these scenarios. Existing solutions such as
HyV [49] and MasQ [22] have already virtualized all control
verbs involving hypervisor in VM-based clouds. This pro-
vides feasible entry points to integrate Harmonic’s software
features into these solutions.
RDMA-friendly rate limiting. We currently repurpose
RNIC’s native rate limiters to modulate tenants’ RDMA re-
source usage by sending CNPs. This achieves efficiency and
is transparent to applications, but we acknowledge that send-
ing CNPs from software may not be the best approach in
the future. For example, a transient network congestion may
affect the accuracy of such rate limiting mechanism. Emerg-
ing RNIC features such as programmable congestion control
(PCC) [43] allow customized congestion control algorithms.
This potentially provides a more straightforward and accurate
way to leverage RNIC’s rate limiter for performance isolation
purposes. For example, a data receiver can send specialized
packets to specify the maximal sending rate that the data
sender can enforce, similar to TCP receive window.
Generality of Harmonic. Harmonic currently targets at
RDMA performance isolation, focusing on the bottlenecked
RNIC microarchitecture resources. We believe Harmonic can
also be leveraged for other scenarios besides RDMA networks.
For example, multiple I/O devices (e.g., GPU and NIC) may
be connected to the same PCIe switch and thereby contend
on PCIe and memory bus resources [30]. Harmonic can also
be adapted to isolate resources among different I/O devices
and hence manage the complex intra-host network.

8 Related Works
Understanding microarchitecture resources in RNICs. Re-
search community has already started to study the hardware
resources in RNICs. Existing works focus on how to avoid
certain performance anomalies caused by NIC resources from
the application layer [15, 26, 27, 29, 38]. Husky [29] discusses
the definition of RNIC microarchitecture and conducts a holis-
tic study on how different RDMA operations make use of
on-NIC microarchitecture resources. Kalia et al. [27] pro-
vide guidelines for writing efficient high-performance RDMA
programs. These works target understanding or optimizing
the RDMA programs and the usage of some specific RNIC
microarchitecture resources, but they do not provide RDMA
performance isolation.

RNIC design. Several works have been conducted to opti-
mize RNIC design [34, 37, 57, 58]. SRNIC [58] modifies both
protocols and RNIC architecture to improve on-NIC memory
efficiency and utilization for better scalability. IRN [37] pro-
poses to enable fast loss recovery on NIC to avoid reliance on
lossless fabrics. These works contribute to improving RDMA
performance. However, our work targets at providing perfor-

mance isolation for multi-tenant RDMA clouds.
Understanding intra-host communication. Intra-host com-
munication has received increasing attention in research com-
munities [5, 6, 30, 33, 39, 61]. Breaking Band [61] leverages
an expensive commercial PCIe analyzer to get a system-level
PCIe latency breakdown. Min [36] implements a simple soft
PCIe switch to obtain CPU-GPU communication patterns.
Neugebauer et al. [39] analyze the PCIe theoretical model
and study how PCIe affects network performance. Harmonic
targets a different angle. It sniffers intra-host communica-
tion traffic to monitor RDMA network behaviors for RDMA
performance isolation.
Performance isolation and QoS. Previous research [12, 20,
25, 32, 50, 51] has already provided software-based solutions
implemented on the endpoints (hosts) and achieved perfor-
mance isolation and QoS, by ensuring VM-pair level band-
width guarantee. However, centering around the TCP/IP ker-
nel network stack, they mainly focus on the bandwidth con-
tention of the network fabric (e.g., switch, router, etc.) and
provide pure software solutions to the narrow problem. Pic-
NIC [32] uses the number of CPU cycles spent on the packet
processing as a criterion of NIC contention for TCP/IP net-
works. Harmonic is an orthogonal and complementary re-
search work, with a focus on performance isolation on the
RDMA-capable endhost. An end-to-end network performance
isolation solution requires isolation mechanisms in different
components of the network, including both inter-host net-
work bandwidth and RDMA NIC resources on the endhost.
Harmonic provides a microarchitecture-resource-aware so-
lution for the RDMA NIC resource isolation in addition to
traditional network bandwidth.

9 Conclusion
We propose the first RDMA performance isolation solution
for public clouds, Harmonic, that is aware of microarchitec-
ture resources. Harmonic consists of an FPGA-based pro-
grammable intelligent PCIe switch to measure per-tenant
RDMA resource usage and an RDMA-friendly rate limiter
to modulate RDMA resource per tenant. Harmonic requires
no application modification. We evaluate Harmonic using the
state-of-the-art test suite for RDMA performance isolation.
Our evaluation results show that Harmonic delivers strong
RDMA performance isolation in a multi-tenant public cloud
setting, compared to all the existing solutions.

Acknowledgement
We thank Xilinx for their technical support. We also thank
our shepherd Yizhou Shan and other anonymous reviewers
for their insightful feedback. Our work is supported in part by
grants from NSF (CNS-2238665 and CCRI-CISE 2213808)
and IBM IIDAI, and gifts from Adobe, Amazon, Meta, Intel,
and IBM.



References
[1] OFED perftest. https://github.com/linux-rdma/

perftest.

[2] RDMA Core Userspace Libraries and Daemons. https:
//github.com/linux-rdma/rdma-core/.

[3] Advanced Micro Devices. How to
implement pcie switch on Ultrascale.
https://support.xilinx.com/s/question/
0D54U00006cnZ2rSAE/how-to-implement-pcie-
switch-on-ultrascale?language=en_US.

[4] Advanced Micro Devices. Use Ultrascale+ PCIe
Integrated block as an endpoint PCI to PCI Bridge
device. https://support.xilinx.com/s/question/
0D54U00006hwlreSAA/use-ultrascale-pcie-
integrated-block-as-an-endpoint-pci-to-pci-
bridge-device?language=en_US.

[5] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understanding
Host Interconnect Congestion. In Proceedings of the
21st ACM Workshop on Hot Topics in Networks (Hot-
Nets), pages 198–204, 2022.

[6] Saksham Agarwal, Arvind Krishnamurthy, and Rachit
Agarwal. Host Congestion Control. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion (SIGCOMM), pages 275–287, 2023.

[7] Amazon. Amazon EC2 Instance Types. https://
aws.amazon.com/ec2/instance-types/.

[8] AMD/Xilinx. Versal Adaptive SoC Integrated Block
for PCI Express LogiCORE IP Product Guide. https:
//docs.xilinx.com/r/en-US/pg343-pcie-versal.

[9] AMD/Xilinx. Vivado Design Suite. https:
//www.xilinx.com/products/design-tools/
vivado.html.

[10] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,
Greg O’Shea, and Eno Thereska. End-to-end Perfor-
mance Isolation Through Virtual Datacenters. In Pro-
ceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 233–
248, 2014.

[11] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kris-
han Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri
Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek
Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya
German, Lakhmeet Ghai, Eric Green, Albert Greenberg,

Manish Gupta, Randy Haagens, Matthew Hendel, Rid-
wan Howlader, Neetha John, Julia Johnstone, Tom Jolly,
Greg Kramer, David Kruse, Ankit Kumar, Erica Lan,
Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen
Liu, Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makher-
vaks, Ulad Malashanka, David A. Maltz, Ilias Mari-
nos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas
Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jor-
dan Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff,
Chris Sparacino, Ashutosh Srivastava, Weixiang Sun,
Nick Swanson, Fuhou Tian, Lukasz Tomczyk, Vamsi
Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua
Yuan, Yanzhao Zhang, and Brian Zill. Empowering
Azure Storage with RDMA. In Proceedings of the 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 49–67, 2023.

[12] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and
Ant Rowstron. Towards Predictable Datacenter Net-
works. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM), pages
242–253, 2011.

[13] Broadcom. Introduction to Thor Congestion Control
for RoCE. https://docs.broadcom.com/doc/NCC-
WP1XX.

[14] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xin-
hao Kong, Thomas Anderson, Matthew Lentz, Xiaowei
Yang, and Danyang Zhuo. Remote Procedure Call as a
Managed System Service. In Proceedings of the 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 141–159, 2023.

[15] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on Reliable Connection with Efficient Re-
source Sharing. In Proceedings of the 14th European
Conference on Computer Systems (EuroSys), pages 1–
14, 2019.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Pub-
lic Cloud. In Proceedings of the 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 51–66, 2018.

https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/rdma-core/
https://github.com/linux-rdma/rdma-core/
https://support.xilinx.com/s/question/0D54U00006cnZ2rSAE/how-to-implement-pcie-switch-on-ultrascale?language=en_US
https://support.xilinx.com/s/question/0D54U00006cnZ2rSAE/how-to-implement-pcie-switch-on-ultrascale?language=en_US
https://support.xilinx.com/s/question/0D54U00006cnZ2rSAE/how-to-implement-pcie-switch-on-ultrascale?language=en_US
https://support.xilinx.com/s/question/0D54U00006hwlreSAA/use-ultrascale-pcie-integrated-block-as-an-endpoint-pci-to-pci-bridge-device?language=en_US
https://support.xilinx.com/s/question/0D54U00006hwlreSAA/use-ultrascale-pcie-integrated-block-as-an-endpoint-pci-to-pci-bridge-device?language=en_US
https://support.xilinx.com/s/question/0D54U00006hwlreSAA/use-ultrascale-pcie-integrated-block-as-an-endpoint-pci-to-pci-bridge-device?language=en_US
https://support.xilinx.com/s/question/0D54U00006hwlreSAA/use-ultrascale-pcie-integrated-block-as-an-endpoint-pci-to-pci-bridge-device?language=en_US
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://docs.xilinx.com/r/en-US/pg343-pcie-versal
https://docs.xilinx.com/r/en-US/pg343-pcie-versal
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://docs.broadcom.com/doc/NCC-WP1XX
https://docs.broadcom.com/doc/NCC-WP1XX


[17] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When Cloud Storage
Meets RDMA. In Proceedings of the 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 519–533, 2021.

[18] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
Resource Fairness: Fair Allocation of Multiple Resource
Types. In Proceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 323–336, 2011.

[19] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C
Snoeren. SmartNIC Performance Isolation with Fair-
NIC: Programmable Networking for the Cloud. In Pro-
ceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 681–693, 2020.

[20] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang
Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yong-
guang Zhang. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees.
In Proceedings of the 6th International Conference on
emerging Networking EXperiments and Technologies
(CoNEXT), pages 1–12, 2010.

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion (SIGCOMM), pages 202–215, 2016.

[22] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. MasQ: RDMA
for Virtual Private Cloud. In Proceedings of the ACM
Special Interest Group on Data Communication (SIG-
COMM), pages 1–14, 2020.

[23] HiTech Global. PCI Express Gen4 Root FMC+ Mod-
ule. https://hitechglobal.us/index.php?route=
product/product&path=18_85&product_id=273.

[24] Intel. Intel® Ethernet 800 Series Linux Flow
Control. https://edc.intel.com/content/www/
us/en/design/products/ethernet/800-series-
linux-flow-control-configuration-guide-for-
rdma-use-c/congestion-management-tuning-
parameters/.

[25] Vimalkumar Jeyakumar, Mohammad Alizadeh, David
Mazières, Balaji Prabhakar, Changhoon Kim, and Albert

Greenberg. EyeQ: Practical Network Performance Iso-
lation at the Edge. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 297–311, 2013.

[26] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of the 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 1–16,
2019.

[27] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design Guidelines for High Performance RDMA Sys-
tems. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), pages 437–450, 2016.

[28] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:
Software-based Virtual RDMA Networking for Con-
tainerized Clouds. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 113–126, 2019.

[29] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,
Alvin R Lebeck, and Danyang Zhuo. Understanding
RDMA Microarchitecture Resources for Performance
Isolation. In Proceedings of the 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 31–48, 2023.

[30] Xinhao Kong, Jiaqi Lou, Wei Bai, Nan Sung Kim, and
Danyang Zhuo. Towards a Manageable Intra-Host Net-
work. In Proceedings of the 19th Workshop on Hot
Topics in Operating Systems (HotOS), pages 206–213,
2023.

[31] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In Proceedings of the 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 287–305, 2022.

[32] Praveen Kumar, Nandita Dukkipati, Nathan Lewis,
Yi Cui, Yaogong Wang, Chonggang Li, Valas Valancius,
Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. PicNIC: Predictable Virtualized NIC. In Pro-
ceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 351–366, 2019.

[33] Qiang Li, Qiao Xiang, Derui Liu, Yuxin Wang, Hao-
nan Qiu, Xiaoliang Wang, Jie Zhang, Ridi Wen, Haohao
Song, Gexiao Tian, Chenyang Huang, Lulu Chen, Shao-
zong Liu, Yaohui Wu, Zhiwu Wu, Zicheng Luo, Yuchao
Shao, Chao Han, Zhongjie Wu, Jianbo Dong, Zheng Cao,

https://hitechglobal.us/index.php?route=product/product&path=18_85&product_id=273
https://hitechglobal.us/index.php?route=product/product&path=18_85&product_id=273
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/
https://edc.intel.com/content/www/us/en/design/products/ethernet/800-series-linux-flow-control-configuration-guide-for-rdma-use-c/congestion-management-tuning-parameters/


Jinbo Wu, Jiwu Shu, and Jiesheng Wu. From RDMA to
RDCA: Toward High-Speed Last Mile of Data Center
Networks Using Remote Direct Cache Access. arXiv
preprint arXiv:2211.05975, 2023.

[34] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control. In
Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 44–58. 2019.

[35] Microsoft. Azure Virtual Machine series.
https://azure.microsoft.com/en-us/pricing/
details/virtual-machines/series/.

[36] Seung Won Min. Fine-grained memory access over
I/O interconnect for efficient remote sparse data access.
PhD thesis, 2022.

[37] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-
tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. Revisiting Network Support for
RDMA. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM), pages
313–326, 2018.

[38] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a Feather Flock Together: Scaling
RDMA RPCs with Flock. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples (SOSP), pages 212–227, 2021.

[39] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding PCIe performance for end host
networking. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM), pages
327–341, 2018.

[40] NVIDIA. DCQCN PARAMETERS. https:
//enterprise-support.nvidia.com/s/article/
dcqcn-parameters.

[41] NVIDIA. Firmware Burning Tools (MFT). https:
//docs.nvidia.com/networking/category/mft.

[42] NVIDIA. MLNX_OFED InfiniBand/VPI.
https://docs.nvidia.com/networking/category/
mlnxofedib.

[43] NVIDIA. NVIDIA ConnectX-6 DX Datasheet.
https://www.nvidia.com/content/dam/en-zz/
Solutions/networking/ethernet-adapters/
connectX-6-dx-datasheet.pdf.

[44] NVIDIA. NVIDIA MELLANOX BLUEFIELD-
2 Datasheet. https://network.nvidia.com/files/
doc-2020/pb-bluefield-2-smart-nic-eth.pdf.

[45] NVIDIA. Quality of Service (QoS).
https://docs.nvidia.com/networking/pages/
viewpage.action?pageId=107485812.

[46] NVIDIA. Security Bulletin: NVIDIA ConnectX
- April 2023. https://nvidia.custhelp.com/
app/answers/detail/a_id/5459/~/security-
bulletin%3A-nvidia-connectx---april-2023.

[47] NVIDIA. Single Root IO Virtualization (SR-IOV).
https://docs.nvidia.com/networking/pages/
viewpage.action?pageId=107485951.

[48] PCI-SIG. PCI Express® Base Specification Revision
4.0. https://pcisig.com/specifications.

[49] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R. Gross.
A Hybrid I/O Virtualization Framework for RDMA-
Capable Network Interfaces. In Proceedings of the
11th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE), page 17–30,
2015.

[50] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jef-
frey C Mogul, Yoshio Turner, and Jose Renato Santos.
Elasticswitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing. In Proceedings of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 351–362, 2013.

[51] Barath Raghavan, Kashi Vishwanath, Sriram Ramab-
hadran, Kenneth Yocum, and Alex C Snoeren. Cloud
Control with Distributed Rate Limiting. In Proceedings
of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM), pages 337–348, 2007.

[52] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. ReDMArk: Bypassing
RDMA Security Mechanisms. In Proceedings of the
30th USENIX Security Symposium (USENIX Security),
pages 4277–4292, 2021.

[53] Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. Sharing the Data
Center Network. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 309–322, 2011.

[54] Konstantin Taranov, Benjamin Rothenberger, Daniele
De Sensi, Adrian Perrig, and Torsten Hoefler. NeVer-
More: Exploiting RDMA Mistakes in NVMe-oF Stor-
age Applications. In Proceedings of the 29th ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 2765–2778, 2022.

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
https://enterprise-support.nvidia.com/s/article/dcqcn-parameters
https://enterprise-support.nvidia.com/s/article/dcqcn-parameters
https://enterprise-support.nvidia.com/s/article/dcqcn-parameters
https://docs.nvidia.com/networking/category/mft
https://docs.nvidia.com/networking/category/mft
https://docs.nvidia.com/networking/category/mlnxofedib
https://docs.nvidia.com/networking/category/mlnxofedib
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectX-6-dx-datasheet.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=107485812
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=107485812
https://nvidia.custhelp.com/app/answers/detail/a_id/5459/~/security-bulletin%3A-nvidia-connectx---april-2023
https://nvidia.custhelp.com/app/answers/detail/a_id/5459/~/security-bulletin%3A-nvidia-connectx---april-2023
https://nvidia.custhelp.com/app/answers/detail/a_id/5459/~/security-bulletin%3A-nvidia-connectx---april-2023
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=107485951
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=107485951
https://pcisig.com/specifications


[55] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: Remote Oracles for the Masses. In Proceed-
ings of the 28th USENIX Security Symposium (USENIX
Security), pages 693–710, 2019.

[56] VITA. FPGA Mezzanine Card Plus (FMC+) Standard.
https://www.vita.com/fmc.

[57] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bo-
jie Li, Binzhang Fu, and Kun Tan. StaR: Breaking the
Scalability Limit for RDMA. In Proceedings of the
IEEE 29th International Conference on Network Proto-
cols (ICNP), pages 1–11, 2021.

[58] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang
Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao Feng,
Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng
Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin
Xu, Ruiqing Feng, Tao Ding, Kai Chen, and Chuanxiong
Guo. SRNIC: A Scalable Architecture for RDMA NICs.
In Proceedings of the 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 1–14, 2023.

[59] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen,
and Haibo Chen. Characterizing Off-path SmartNIC for
Accelerating Distributed Systems. In Proceedings of the
17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 987–1004, 2023.

[60] Zhuolong Yu, Bowen Su, Wei Bai, Shachar Raindel,
Vladimir Braverman, and Xin Jin. Understanding
the Micro-Behaviors of Hardware Offloaded Network
Stacks with Lumina. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM),
pages 1074–1087, 2023.

[61] Rohit Zambre, Megan Grodowitz, Aparna Chan-
dramowlishwaran, and Pavel Shamis. Breaking Band:
A Breakdown of High-Performance Communication. In
Proceedings of the 48th International Conference on
Parallel Processing (ICPP), pages 1–10, 2019.

[62] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in Hard-
ware Kernel-Bypass Networks. In Proceedings of the
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 1307–1326, 2022.

[63] Zhenwei Pi. Redis Over RDMA Implementation.
https://github.com/redis/redis/pull/11182.

[64] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA

Deployments. In Proceedings of the ACM Special Inter-
est Group on Data Communication (SIGCOMM), pages
523–536, 2015.

A Harmonic Prototype Setup
We present the prototype setup of Harmonic in Figure 14.
PIPS is implemented on an AMD Versal VCK190 FPGA
board, connecting to the host system with a PCIe extender
card. We connect RNIC with PIPS using an FMC+ expansion
connector because the FPGA board does not contain a PCIe
root connector interface. FMC+ is built upon FPGA Mezza-
nine Card (FMC) standard [56] which is a versatile and widely
adopted standard for high-performance interfacing FPGAs
with external devices.

B Entries for Mappings and Statistics
We illustrate the address-to-object/tenant mapping and statis-
tics entry format in Figure 13. We explain how each field is
derived to offer a comprehensive understanding of the map-
ping mechanism in Harmonic.

B.1 Address-to-Object/Tenant Mappings

There are mainly three types of objects (i.e., memory regions,
queue structures, and RDMA metadata) in RDMA. All these
objects will be pinned in the host physical memory after cre-
ation, and the RNIC will maintain virtual-to-physical address
mappings to DMA these objects.

The first type of object is application’s memory region
(MR). Applications register these MRs through ibv_reg_mr,
which is processed by mlx5_ib.ko drivers in our NVIDIA
testbed. We modify mlx5_ib.ko to record the starting phys-
ical address, the process ID (PID) of the caller, the size and
the memory flags (e.g., IBV_ACCESS_REMOTE_WRITE, which
allows remote write) of this region. Note that we use con-
tainer’s process ID as tenant ID (TID).

The second type of objects is queue structures, including
send/receive queues, completion queues, and the doorbell
(memory mapped registers) for these queues. When an appli-
cation initiates RDMA data verbs, the memory is accessed by
the RNIC to fetch WQEs from send/receive queues or write
completion queue entries (CQE) to completion queues. The
memory for these objects is allocated and pinned during the
allocation of these projects, such as mlx5_ib_create_qp in
mlx5_ib.ko. Similarly, we record the PID of the caller, and
the address and size of these objects.

The third type of object is RDMA metadata managed by
RNIC driver and firmware, including QP contexts and mem-
ory translation/protection tables. When other two types of
objects (e.g., a QP) are created, the firmware reserves a few
pinned pages and allocates metadata (e.g., a QP context) in
the pinned pages. We record the information on these pinned
pages in a similar fashion as described above.

Figure 13a shows our unified entry to update such address-
to-object/tenant mappings to our PCIe switch. Note that the

https://www.vita.com/fmc
https://github.com/redis/redis/pull/11182


Opcode: 127-112 Rsvd: 111-96 Size: 95-65 Flags: 64-63 Addr: 62-15 TID: 14-3 Type: 2-0

(a) Address-to-Object/Tenant Mapping Entry Format.

# Byte: 63-31 # Access: 30-1 Direction: 0 

(b) Statistics Entry Format.

Figure 13: Address-to-Object/Tenant Mapping and Statistics Entry Formats.

Programmable 
Intelligent

PCIe Switch
(PIPS)

RNIC

Server

FM
C

+
C

o
n

n
ec

to
r

Figure 14: Programmable Intelligent PICe Switch (PIPS) Prototype.

most significant 16 bits of address-to-object/tenant mapping
entry together serve as an operation code that notifies PIPS to
either insert or delete the entry in PIPS. We reserve the second
16-bit field considering the possibility of other customization
demands. Our modified drivers will fill in the remaining five
fields and expose these entries to Harmonic daemon through
system files.

B.2 Per-tenant RDMA Statistics

We store the monitored RDMA resource statistics in a 128-bit
structured entry as shown in Figure 13b. As discussed in §4,
the TLP analyzer leverages the physical address enclosed in
TLP headers to search and retrieve the corresponding address-
to-object/tenant mapping entry from which we identify the
object and tenant associated with the TLPs. Then we collect
and record PCIe bandwidth consumption, number of PCIe
transactions, direction of TLPs, accessed memory type, and
other information from TLP headers (Figure 4) in per-tenant
statistics entries.

C Harmonic PCIe Overhead Computation
PIPS maintains 40 statistic entries per tenant and each entry is
8-byte. We issue PCIe read request to read these statistics from
PIPS. For a PCIe read request, the minimum PCIe protocol
overhead is 20 bytes [48]. Upon receiving the read request,
PIPS responds with a completion packet (i.e., Completion
TLP), containing 8-byte payload and a 16-byte PCIe protocol
overhead. Therefore, for a single statistics read, it consumes
800-byte for host-to-PIPS direction 960-byte for PIPS-to-host
direction in total.

Assuming Harmonic daemon polls the statistics every N
milliseconds. The extra PCIe bandwidth consumed therefore
is 1000

N ∗ 8 ∗ 800 = 6.4
N Mbps for the host-to-PIPS direction

and 7.68
N Mbps for PIPS-to-host direction. Harmonic currently

poll statistics every 100 us, which consumes 64 Mbps and
76.8 Mbps for these two directions. This overhead is less than
0.25% of the total PCIe bandwidth. Together with the extra
PCIe bandwidth consumed by updating mappings, the overall
PCIe bandwidth overhead of Harmonic is below 0.31% which
can be comfortably accommodated by the existing 21.87%
bandwidth slack between PCIe and RNIC line rate. Note that
we assume our PCIe limit as 32 Gbps, which has the same
network-to-PCIe capacity ratio as higher speed networks (e.g.,
100 and 200 Gbps). This means that the PCIe overhead of
our solution remains negligible with a higher network speed.
Not to mention that this PCIe overhead only depends on the
number of tenants and the frequency of polling, independent
on network bandwidth.


	Introduction
	Background
	Remote Direct Memory Access
	RDMA Performance Isolation
	Design Space for Monitoring and Controlling Tenant RDMA Resouce Usage

	Harmonic Overview
	Programmable Intelligent PCIe Switch
	PCIe Configuration and Routing Logic
	Address-to-Object/Tenant Mappings
	Mapping Synchronization and Management
	Efficient TLP Analyzer

	RDMA-friendly Rate Limiting
	Data Verbs Rate Limiting in Harmonic Daemon
	Control Verb Rate Limiting in Harmonic Drivers

	Evaluation
	Testbed Setup
	Measurement and Control of RDMA Resources
	Harmonic End-to-end Evaluation
	Performance Isolation for End-to-End Applications
	Overhead Analysis

	Discussion
	Related Works
	Conclusion
	Harmonic Prototype Setup
	Entries for Mappings and Statistics
	Address-to-Object/Tenant Mappings
	Per-tenant RDMA Statistics

	Harmonic PCIe Overhead Computation

