
Collie: Finding Performance Anomalies in RDMA Subsystems

Xinhao Kong1,2 Yibo Zhu2 Huaping Zhou2 Zhuo Jiang2

Jianxi Ye2 Chuanxiong Guo2 Danyang Zhuo1

1Duke University 2ByteDance Inc.

Abstract
High-speed RDMA networks are getting rapidly adopted in
the industry for their low latency and reduced CPU over-
heads. To verify that RDMA can be used in production, sys-
tem administrators need to understand the set of application
workloads that can potentially trigger abnormal performance
behaviors (e.g., unexpected low throughput, PFC pause frame
storm). We design and implement Collie, a tool for users
to systematically uncover performance anomalies in RDMA
subsystems without the need to access hardware internal de-
signs. Instead of individually testing each hardware device
(e.g., NIC, memory, PCIe), Collie is holistic, constructing a
comprehensive search space for application workloads. Collie
then uses simulated annealing to drive RDMA-related per-
formance and diagnostic counters to extreme value regions
to find workloads that can trigger performance anomalies.
We evaluate Collie on combinations of various RDMA NIC,
CPU, and other hardware components. Collie found 15 new
performance anomalies. All of them are acknowledged by
the hardware vendors. 7 of them are already fixed after we
reported them. We also present our experience in using Collie
to avoid performance anomalies for an RDMA RPC library
and an RDMA distributed machine learning framework.

1 Introduction
Data center applications relentlessly demand low packet la-
tency and high CPU efficiency. That makes Remote Direct
Memory Access (RDMA) an appealing solution for cloud
providers and other data center operators. Today, many top
companies have already adopted RDMA in their data cen-
ters [11, 20, 46]. RDMA has been integrated into many ap-
plication domains, such as graph processing [2, 41], data
stores [4, 16], and deep learning [14, 44].

To deploy RDMA in production, i.e., using RoCEv2 for
Ethernet-based data center network, we need to make sure
that the RDMA network performance can meet our expecta-
tions, free of performance anomalies like low throughput and
pause frame storm [11, 13, 32, 46]. This is important because
applications require high-performance RDMA networks to de-

liver their service-level objectives (SLO). Furthermore, some
abnormal behaviors, like pause frame storms, can cause catas-
trophic consequences including deadlocking the entire data
center network [8, 11, 13, 37].

We have encountered the following anomalies in our Ro-
CEv2 production environment:

• A particular application workload’s performance of the
same RDMA NIC (RNIC) varies substantially on servers
with only a slight difference in their PCIe specifications.

• A specific application workload only triggers pause
frame storms with certain NUMA settings on a particular
RNIC combined with particular server hardware.

• A particular application workload triggers pause frame
storms with only a single connection on a particular
RNIC from a particular vendor.

Although we collaborate with the most reliable vendors
and they have conducted extensive tests on individual devices,
the entire RDMA subsystem still has anomalies. The RDMA
subsystem consists of RNICs and other server hardware that
interacts with the RNICs. Our observation is that most of
the anomalies are highly related to the interactions between
RNICs and rest of the server hardware. Additional integration
tests are thus critical, and we usually conduct these tests on
our own because of two reasons. First, vendors cannot access
our highly customized hardware, system configurations, and
applications. Second, anomalies are too critical for the relia-
bility and performance of the entire data center network, and
we cannot completely rely on third parties for testing.

Currently, there are two approaches to conduct tests over
the entire subsystem. The first approach is to run simple test
benchmarks (e.g., Perftest [34]) to conduct basic through-
put and latency tests. The second approach is to run a set of
representative RDMA applications. Unfortunately, these two
approaches are not able to comprehensively uncover RDMA
subsystem anomalies. The fundamental problem is that these
approaches only test simple or existing workloads. They there-
fore fail to capture anomalies comprehensively because real



application workloads change over time. In addition, even if
an anomaly is found with an application workload, applica-
tion developers do not know how to modify the workload to
avoid the anomaly.

Our goal for this paper is to explore the possibility of sys-
tematic search for application workloads that can trigger
performance anomalies in RDMA subsystems. Finding these
anomalies for the vendors can help them improve their hard-
ware and thus improve the reliability and the performance
of the entire data center network. Besides, the systematic
approach can help developers understand the conditions to
trigger such anomalies and how to avoid them by changing
application workloads.

To realize this goal, the first question is how to formally de-
fine an anomaly? Having such a definition is difficult because
application performance highly depends on the workload and
the hardware. In this paper, we focus on two types of perfor-
mance anomalies that can be precisely defined: no PFC pause
frames if the network is not congested and throughput should
be bottlenecked either by bits/second or packets/second as in
RNIC specification.

Given this definition, we still need to address three chal-
lenges. The first challenge is how to build a comprehensive
workload search space. An ideal approach for testing with the
entire RDMA subsystem is to exactly modeling each com-
ponent and then construct the search space. However, this is
extremely hard for us, given the black-box nature of RNIC
and other hardware components. The second challenge is
even after we successfully construct a comprehensive enough
search space, how can we search efficiently? The search space
is inherently very large because RDMA subsystems are com-
plicated. For example, traffics within an RDMA subsystem
can be from/to different memory devices (e.g., main memory
and GPU memory) and the transportation setting for a given
workload is various (e.g., number and type of connections).
Conducting tests blindly in such a large space is inefficient.
The third challenge is how to find the complicated triggering
conditions of such anomalies? This is important both during
the search and after the search. During the search, we need
the triggering condition to avoid testing similar application
workloads for the same anomaly to speed up the search. After
the search, we need to use these conditions to help developers
avoid anomalies.

To this end, we design and implement Collie, the first tool
to systematically uncover RDMA subsystem performance
anomalies, with the following three ideas.

Our first idea is to construct the search space from a de-
veloper’s perspective. Though the underlying hardware is
various and opaque to us, the narrow-waist RDMA program-
ming abstractions (i.e., verbs) are clearly defined and stable.
All application workloads can be interpreted as a combina-
tion of verbs operations. We carefully analyze the standard
verbs library and the design decisions developers are allowed
to make (the request pattern, how RDMA buffers are allo-

cated, etc.). Moreover, to cover the entire RDMA subsystem,
we analyze all the potential data flows within a given server
configuration. In this way, Collie constructs a comprehen-
sive search space for application workloads in the domain
of RDMA subsystem, including the host of the network traf-
fic (e.g., GPU connected to a different PCIe bridge from the
RNIC, DRAM from a different CPU socket), message sizes,
number of connections, and memory region configurations.

Our second idea is that we can use two sets of counters
to guide the search. The first set is the performance coun-
ters (e.g., bits per second), which are provided by all com-
modity RNICs and other hardware components. In addition,
modern commodity RNICs and other hardware components
provide diagnostic counters (e.g., PCIe backpressure). Diag-
nostic counters are mapped to particular unexpected events
that happen to the hardware components. These counters are
currently only used for debugging and monitoring purposes.
Collie uses search algorithms based on simulated annealing
to maximize/minimize counter values to uncover anomalies.

Our third idea is to find the minimal area in the search
space that covers the found anomalies. We call this area (i.e.,
the conditions to trigger the anomaly) the minimal feature
set (MFS). Collie includes a MFS algorithm to test each
feature that an anomaly has (e.g., number of connections)
and generate the necessary conditions set. With the MFS
algorithm, Collie can further improve search efficiency by
avoiding redundant tests of the same area. Also, finding the
triggering conditions of an anomaly allows developers to
avoid the anomaly by breaking one of the provided conditions.

We evaluate Collie on 8 different RDMA subsystems, in-
cluding 6 types of RNICs from NVIDIA Mellanox and Broad-
com, with speeds between 25 Gbps and 200 Gbps. Before we
build Collie, we already know 3 existing performance anoma-
lies by testing with existing RDMA applications. Collie suc-
cessfully reproduces all of them and has found 15 new anoma-
lies. We report these anomalies to the vendors, and all of them
are acknowledged. 7 of them are already fixed by firmware
upgrade or detailed configuration following our vendors’ in-
structions. We also describe our experience in using Collie
to guide an RDMA RPC library and an RDMA distributed
machine learning framework to avoid these anomalies. These
experiences show Collie can help data center operators to
uncover anomalies and assist RDMA application developers
to implement better applications.

This work makes the following contributions:

• We design a developer-oriented approach to systemati-
cally construct a search space of application workloads
to find performance anomalies in RDMA subsystems.

• We propose the first work to leverage hardware counters
to guide the search for performance anomalies. These
counters do not have proprietary hardware knowledge.
This makes Collie general and useful for all types of
RDMA subsystems.



RNIC

NIC Cache

MMU

TX Buffer

RX Engine

RX Buffer

PCIe Interface

Ringing Doorbell

Memory Translation 
and Authorization

Cache Miss

Packet DecapsulationPacket Encapsulation

Loopback Traffic

RX Data Processing and 
Completion Generation

TX Engine

1

4

8

2

3

6

5

4 4

7

4 6

5 7

0 2

1 3

PCIe
switch

PCIe
switch

GPU0 GPU1 GPU2 GPU3

PCIe
switch

PCIe
switch

GPU4 GPU5 GPU6 GPU7

RNIC RNIC RNIC

NVSwitch

12

13

15
9 10

xGMI

Control Flow

PCIe
NVLink
Cross-Chiplet

Data Flow

Server

NIC

Socket 0 Socket 1

1

16

14

11

Figure 1: An example of an RDMA subsystem (RNIC internal design and its deployment environment in a server). Red circles mean potential
performance bottlenecks that can trigger performance anomalies.

• We develop a simulated annealing based search algo-
rithm and MFS algorithm. These algorithms speed up
search and help developers avoid anomalies.

• We implement Collie, the first tool to help data center
operators to uncover and avoid RDMA subsystem per-
formance anomalies. Collie has found 18 anomalies (3
known ones and 15 new ones). We present these anoma-
lies, their mitigation strategies, and their implications.

2 Background

2.1 RDMA Subsystem Performance Anomalies

RDMA is increasingly deployed in data centers for applica-
tions to achieve high throughput and high CPU efficiency.
An application process can directly communicate through an
RNIC with a remote process without involving either side’s
CPUs. RDMA requires a lossless network to achieve high
performance. The default technology to deploy RDMA for
Ethernet-based data centers is RoCEv2 [11, 46]. It relies on
Priority-based Flow Control (PFC) [35] mechanism to guaran-
tee a lossless network: once an ingress queue length exceeds
a threshold, the switch/NIC sends out a PFC pause frame to
the upstream egress queue, asking the egress queue to pause
for a duration to avoid ingress queue overflow.

RDMA subsystem performance does not always meet user
expectations and can have severe performance anomaly. Ac-
cording to our production experience, specific application
workloads can trigger hardware bottlenecks of a particular
type of RDMA subsystem and cause the entire subsystem
performance to drop drastically. Applications of the same
subsystem will be affected (e.g., throughput drop) and miss
the service level agreement. Worse still, an anomalous RDMA
subsystem can send out a large amount of PFC pause frames,
which pauses the priority queue of the corresponding switch

port and may threaten the entire data center network, such as
causing head-of-line blocking and PFC deadlocks [11,13,28]

Though the vendors of RNICs and other hardware com-
ponents (e.g., GPU, motherboard) have conducted extensive
tests on their products, we still find many anomalies in our
RoCEv2 production environment. The fundamental reason
is that RDMA performance is highly related to the entire
RDMA subsystem, consisting of both RNIC internals and
other hardware components. Figure 1 shows the complexity
of an RDMA subsystem. This figure is based on public
resources [24, 32, 42] and does not expose proprietary in-
formation. Our conversation with Mellanox indicates that
a real RNIC is much more complex than our figure shows.
To the best of our understanding, an RNIC has at least 6 com-
ponents: (1) a TX engine that receives doorbells (a signal
mechanism for the server to notify RNIC to send a request),
fetches and processes requests, and initiates transmission; (2)
an MMU that translates the virtual address to physical ad-
dress for RDMA memory regions; (3) an SRAM-based NIC
cache that caches per-connection metadata and memory trans-
lation table; (4) a RX engine that processes incoming data
and generates completion to notify server; (5)(6) buffers that
hold packets to transmit and received packets. An RNIC is
connected to a server via PCIe. The server has two CPU sock-
ets and each CPU socket has four CPU chiplets (Only AMD
CPUs and new-generation Intel CPUs have cross-chiplet com-
munication, otherwise all the cores inside a CPU socket share
the last-level cache.) RNICs and GPUs are all connected to
PCIe switches.

There are many potential performance bottlenecks inside
the RNIC and between the RNIC and other hardware com-
ponents within the RDMA subsystem. We use red circles to
show such potential bottlenecks (in Figure 1). When these
bottlenecks are triggered, the network performance may drop
and the RNIC can even send out pause frames to reduce



the amount of traffic going through the RNIC. We find that
many anomalies only occur when multiple bottlenecks or
the bottlenecks between different components are triggered.
For example, when the RNIC receives a packet, it will store
the packet in RX buffer, process the packet (circle 7), and
finally DMA the content to main memory or GPU memory
(circles 10, 12, 13 or circles 10, 12, 14). Normally, the RX
buffer won’t accumulate much because the PCIe bandwidth
is larger than RNIC’s line rate (circle 1). However, once there
exists loopback traffic (e.g., the client and server are collo-
cated on the same host), the loopback traffic (circle 11) may
drain the PCIe bandwidth and cause RX buffer accumulation.
It depends on both the RNIC and the PCIe slot. The worst
consequence is that the RNIC keeps sending a large amount
of PFC pause frame and threatens the entire data center net-
work. Vendors’ individual tests are not able to uncover this
anomaly because it depends on the combination of circles 1,
11, 12 (even more) from different components. Further, data
center operators like us may use highly customized hardware
or specific system configurations that are not accessible to
vendors. This makes it necessary and crucial for us to conduct
our own independent tests before deploying RDMA hardware
in production, especially for anomalies that can potentially
generate pause frame storms.

2.2 Existing Approaches

Data center operators’ tests are integration tests: instead
of testing individual hardware components, these tests fo-
cus on the performance of the entire RDMA subsystems.
There are two existing approaches. The first approach is
to run a set of test traffic, such as Perftest [34] and
OSU micro-benchmarks [33]. The second approach is to
run a representative set of real applications. However, these
two approaches can not uncover RDMA subsystem perfor-
mance anomalies comprehensively. For example, we deploy
200 Gbps RNICs in our clusters to support a performance-
critical distributed machine learning framework. We test the
machine learning framework on the cluster of these RNICs,
and there is no performance anomaly found. We also have
done extensive testing both with synthetic testing workloads
and other real applications before deployment. However,
months after deployment, our developers find that the per-
formance of the framework has reduced significantly, even
worse than just using 100 Gbps RNICs. At the same time, a
substantial amount of pause frames are generated from these
200 Gbps RNICs. This is strange because pause frames usu-
ally appear with hundreds of connections that trigger con-
gestion, but our machine learning framework only creates a
few connections between each server pair. We stopped the
machine learning framework and ran our performance tests
again, and everything is normal. After several weeks of care-
ful debugging, we finally realize that the case only happens
when the application (1) use one-sided RDMA operations
with Reliable Connection, (2) has bidirectional traffic, (3)

Workload Generator

Simulated 
Annealing

Anomaly Monitor

Anomaly 
Detection

MFS
Generation

Workload Engine

Workload Setup

Updated MFS Set

Counters
(Perf and 

diagnostic)

Workload pattern

RDMA Subsystem

Set up workload

Throughput,
PFC pause frames 

Figure 2: System Overview. The workload engine sets up RDMA
traffic. The anomaly monitor detects performance anomalies and
their minimal feature sets. The workload generator fetches hardware
counters and decides the workload pattern to test.

uses a particular workload including a mixture of small and
large messages, (4) with 200 Gbps RNIC on particular AMD
servers. We find that the developers for our machine learning
framework slightly modified their code after passing our appli-
cation tests. The new workload contains messages of mixed
lengths (i.e., a large message followed by a small message
followed by a large message in bidirectional traffic), which
triggers a performance bottleneck between the RNIC and the
PCIe switch. This is not a problem with 100 Gbps RNICs
from the same vendor or on other types of servers.

The fundamental reason why current approaches fail
to uncover such anomalies is that they only test existing
workloads and inherently are not able to capture anomalies
triggered by unknown workloads. However, real application
workloads are various and will change over time. Besides,
even current approaches have found such anomalies, it is
hard and time-consuming to locate the triggering conditions.
Capturing the triggering conditions of performance anoma-
lies allows data center operators to work with vendors to
fix potential hardware/firmware bugs, and improve the reli-
ability and performance of the data center network. When
fixes to the anomalies are not immediately available (e.g.,
firmware upgrade, hardware replacement), application devel-
opers can build high-performance RDMA applications by
avoiding workload that can trigger anomalies.

3 Overview
We build Collie, the first tool to help data center operators sys-
tematically search for application workloads that can trigger
performance anomalies.

The first question we need to answer is how to define an
anomaly? Unfortunately, today there does not exist such a
definition. Having such a definition is fundamentally hard
because application performance (e.g., latency) can be highly
dependent on the workload and the hardware. Instead of try-
ing to capture the entire set of anomalous behaviors, we fo-
cus on two types of performance anomalies that are of great
importance in production environment and can be precisely
defined: when applications keep injecting RDMA traffic into



the network, (1) no PFC pause frames should be generated if
the network is not congested; (2) throughput should be bot-
tlenecked either by total bits/second or total packets/second
as in RNIC specifications. The first definition ensures that
an RDMA subsystem will not threaten the entire data center
network and the second ensures that an RDMA subsystem’s
capability matches user expectation. 1 We discussed this defi-
nition with several hardware vendors, and they all agree with
our definition. Even though some anomalies may be due to
system limitations rather than bugs, it is also important for
both vendors and us to be aware of them. We report all the
anomalies we found using this definition to the hardware
vendors, and they acknowledged all the reported anomalies.
We believe that this definition naturally matches the appli-
cation developer’s mental model of RDMA and thus allows
developers to roughly estimate the network performance.

Given this definition of anomaly, we still need to overcome
three major research challenges.

Challenge #1: How to design a comprehensive workloads
search space for a given RDMA subsystem? An ideal solution
is to carefully analyze and modeling the entire RDMA subsys-
tem, and then construct the search space from the perspective
of hardware. This complete white-box approach allows us to
test all bottlenecks and the combinations of them givens an
RDMA subsystem. However, it is impractical for data cen-
ter operators like us due to the black-box nature of RNICs
and other hardware components. Our key observation is that
though the components of RDMA subsystems are black boxes
and there are diverse RDMA applications, the abstractions
between the hardware and applications are clearly defined and
stable. All application workloads are essentially composed
of a series of basic verbs operations, a narrow waist of the
RDMA programming. With this observation, we carefully
analyze this RDMA programming abstraction and design a
general search space (§4).

Challenge #2: How to search efficiently? Due to the com-
plexity of RDMA subsystems and the variety of workloads,
the size of search space is very large. Unfortunately, none of
existing heuristic search algorithms can be directly applied
due to the lack of a search signal (e.g., direction for the next
workload to test). We observe that there are two sets of coun-
ters commodity RDMA subsystem provide can be leveraged
to guide the search. The first set is known as performance
counters. For example, all modern RNIC provide the counter
of bits sent per second for monitoring purpose. The second
is known as diagnostic counters. Modern RNICs and other
hardware components expose diagnostic counters for debug-
ging purpose (e.g., the counter indicates PCIe backpressure
and NIC internal cache miss) [22, 23]. Diagnostic counters

1We do not use latency as a metric to define anomalies. The only latency
specification for RNICs is the latency under zero load. We did not observe any
anomaly in this way, probably because the RNIC is not stressed. However,
when RNIC is stressed, it is hard to accurately define the correctness of
latency or tail latency due to queuing delay.

are more informative. For example, when some bottlenecks
of the RDMA subsystem are triggered, the performance may
not drop while the corresponding diagnostic counter has in-
creased. However, using diagnostic counters typically requires
vendor’s assistance, and the number of diagnostic counters
customers can access depends on vendors. For Collie to be
general, we use both performance counters and optionally
diagnostic counters as search signals. We conduct the effi-
cient search by using a simulated annealing based algorithm
to drive these counters to extreme value regions (§5.1).

Challenge #3: How to find the set of conditions to trigger
anomalies? Some anomalies are complicated and only occur
when many features co-exist, such as a certain type of trans-
portation, particular message pattern, lots of connections, and
specific batching operations. We invent a minimal feature set
(MFS) algorithm to detect each factor’s contribution to the
uncovered anomaly and construct the necessary conditions
set. To search efficiently, we use MFS to avoid testing similar
workloads that map to the same anomalies. After the search,
developers use the MFS to understand the triggering condi-
tions for each anomaly and bypass them accordingly when
the fixes are temporarily unavailable (§5.2).

Figure 2 shows our system design. Collie consists of three
core components: (1) a workload engine that conducts experi-
ments on RDMA subsystems by setting up RDMA traffic; (2)
an anomaly monitor that detects performance anomaly and
MFS to reproduce the observed anomaly; and (3) a workload
generator that decides the next workload pattern to experi-
ment based on the counters collected in the RDMA subsystem
and the current search space. All the experiments Collie does
are on the RDMA subsystem with two servers with RNICs,
connected with a commodity switch.

4 Search Space and Workload Engine
There are two types of factors that can affect an RDMA sub-
system performance in deployment. First, we need to consider
the application workloads. These include host topology (i.e.,
where does traffic come from inside a server), how many
memory regions the application registered, what transport
applications choose to use, and the message patterns. Second,
we need to consider the network behavior, for example, con-
gestion on switch and packet loss rate. Currently, our paper
focuses on constructing a comprehensive search space for the
first factor. For the network behavior, we consider a simplified
environment: two RNICs connected by a single switch, and
there is no packet drop on the switch. Collie can be easily
generalized to test more complicated environments.

We take the bottom-up approach to construct a compre-
hensive search space for various application workloads. We
decompose application workloads into combinations of basic
RDMA operations and construct the search space based on
these combinations. Figure 3 shows the key abstractions and
operations of RDMA programming. These are only high-level
software abstractions exposed by standard verbs API and we



Queue Pair 
(QP)

Completion Queue 
(CQ)

Memory Region 
(MR)

ibv_create_qp(…)
ibv_modify_qp(…)
Dimension (3)

ibv_create_cq(…)
Dimension (3)

ibv_reg_mr(…)
Dimension (1)
Dimension (2)

ibv_post_send(…)
ibv_post_recv(…)
Dimension (4)

ibv_poll_cq(…)
Dimension (4)

Work Queue Element
(WQE)

Generate CQ element

Figure 3: RDMA programming abstractions

do not need to know how these high-level abstractions are im-
plemented in the RNIC. In this way, the search space is more
comprehensive and general because it does not rely on either
extra proprietary RDMA subsystem hardware knowledge or
specific application features. In addition, the combinations of
verbs operations are inherently able to describe workloads of
both single application and co-existing scenarios.

We examine the RDMA programming model at first and
extract four search dimensions that jointly describe the appli-
cation workloads of the entire subsystem. To send a message
through RDMA networks, applications first need to register
a set of memory regions (MRs), using ibv_reg_mr. Once
registered, an RNIC has the right to directly access these MRs
without CPU involvement. Second, applications create a set
of queue pairs (i.e., connections in traditional networking
terminology), using ibv_create_qp and ibv_modify_qp.
Applications need to choose a transport type for each queue-
pair (QP). There are three standard types of QPs: Reliable
Connection (RC), Unreliable Connection (UC), and Unreli-
able Datagram (UD). Applications can use ibv_post_send
or ibv_post_recv to post a list of Work Queue Element
(WQE). Each WQE represents a work request and has a
scatter-gather (SG) list. Each SG list contains a list of en-
tries and each entry designates a contiguous memory region
that is within the registered memory regions. A WQE can
notify the RNIC to READ/WRITE remote memory (1-sided
operation) or SEND/RECV local memory to/from a remote
server (2-sided operation). To know that a WQE is complete,
the application can register a completion queue (CQ) using
ibv_create_cq, and the application can call ibv_poll_cq
to poll on the CQ to get completion queue elements (CQE).
Given this RDMA programming model, we extract the fol-
lowing search dimensions.

Dimension 1. Host Topology. Host topology describes how
traffic flows to/from an RNIC to/from other server hardware
components. Individual component tests are hard to cover this
dimension while the topology has a huge impact on RDMA
subsystem performance. For example, traffic can be from
NUMA-affinitive DRAM or from a GPU that needs to traverse
both PCIe and SMP interconnect between NUMA nodes. The
latter will have a longer data path and therefore higher average
DMA latency. This will trigger PCIe backpressure to the
RNIC and may induce performance anomalies under some

specific application workloads. We list all accessible memory
devices for this dimension.

Dimension 2. Memory Allocation Settings. Traditional
RDMA testing is not comprehensive for this dimension, while
the memory allocation settings are crucial for RDMA subsys-
tem performance testing. First, the number of MRs affects
RDMA subsystem performance because RNIC has an MMU
that translates virtual addresses of memory regions to DMA-
capable physical addresses and handles memory protection
(e.g., authorization). RNIC only caches a fixed size of entries
of the memory address translation table. If too many MRs are
registered, it is then likely that the RNIC encounters cache
miss and needs to access memory address translation tables on
server DRAM via extra PCIe operations. These interactions
have an impact on the performance. Second, MRs can have
different sizes. This also affects RDMA performance because
the size also affects the number of translation table entries.
Moreover, many RNICs use Intel Data Direct IO (DDIO) to
directly access the CPU’s last-level cache. If the access range
of an MR is large, it can cause severe cache misses in the
CPU’s last-level cache [3]. This dimension is bounded be-
cause we can set a reasonable upper bound on the number of
MRs (200K), and the MR size is bounded by the total amount
of memory that can be registered (pinned) in the physical
server.

Dimension 3. Transport Setting. Transportation setting is
crucial for RNIC performance, and this is well known in the
research community [15,17,27]. We use the following factors
to compose the transport setting: (1) QP type (RC, UC, UD),
(2) the number of QPs, (3) the opcode type (SEND/RECV,
WRITE, READ), and (4) the usage of SG and WQE. Differ-
ent QP type with different opcode creates different pressure
for the RNIC. For example, UD does not require ACK for
each packet, which lessens the RNIC packet processing pres-
sure. However, the SEND/RECV requires pre-posted receive
buffers, which puts more pressure on the RNIC cache. The
number of QPs also has a great impact on RNIC performance
because of the limited RNIC cache. This is known as the
scalability problem [3, 15, 32]. How SG list and WQE affect
RNIC performance is a bit tricky. RNICs have to consume ex-
tra PCIe bandwidth to fetch WQE from the host DRAM [17].
The PCIe bandwidth consumed by WQE becomes substantial
under some particular application workloads and can even be
the performance bottleneck. We enumerate all the transport
types and the opcodes (e.g., RC WRITE, UD SEND). It is
practical and reasonable to set an upper bound (e.g., 20K) for
the number of QPs because data center operators will hardly
set up more connections. The SG list and WQE can be pa-
rameterized by this formula: ∑

n
i=1 mi = k, where k denotes

the number of messages to send, n denotes the number of
WQE and mi denotes the number of SG elements within the
ith WQE.

Dimension 4. Message Pattern. Existing RDMA test-
ing approaches lack flexibility and comprehensiveness, es-



pecially for this dimension. Perftest [34] only repeatedly
send messages of a fixed size and other collective communi-
cation benchmarks (e.g., OSU benchmark [33]) test RDMA
similarly. These simple benchmark traffic are inadequate for
RDMA subsystem testing because they ignore the interaction
among different requests (i.e., WQE) in a sequence.

Our ideal goal is to construct this dimension that can repre-
sent any application message pattern. However, it is impracti-
cal because application traffic can be very different and the
interaction among different requests is unknown given the
black-box nature of RNIC. We therefore construct this dimen-
sion in the following way. We build a request vector with n
elements, where each element describe the request attribute
(e.g., size of the message to send). We assume that the 1st

request affects the 2nd , the 3rd , ..., the nth requests but won’t
affect the request after the nth. The larger n we set the larger
search space we can cover, but we also need to consume more
time. This kind of trade-off is similar to the approach when
testing file systems [21], where researchers test fixed-length
file system operation sequences. Modern RNIC has limited
Processing Units (PU) and pipeline stages [39], restricting the
number of outstanding requests an RNIC can process. We thus
set n to be the product of the number of PUs and the pipeline
stages. We discretize request size into multiple discrete value
regions based on MTU and the burst size of the RNIC. The
RNIC splits a long request into multiple bursts and processes
each burst at one time to avoid Head-of-Line (HoL) blocking.
The granularity can be easily modified. With more search
time, we can discretize request size in a more fine-grained
way. Message inter-arrival time is usually considered as a
parameter for application workloads. However, adding the
inter-arrival time will substantially extend our search space,
so we temporarily only consider the pattern without such
inter-arrival time.

Workload engine. We build a flexible workload engine
to conduct tests in our search space. Compared to traditional
traffic generation tools, e.g., Perftest2, our workload engine
is more flexible and has a holistic view. It can send and re-
ceive traffic with particular pre-defined patterns (e.g., a large
WRITE request followed by a small SEND request). Besides,
it supports various memory and transport settings, which can
test the entire subsystem holistically. To test with a point in
our search space, Collie first translates a test point’s settings
into a set of input parameters of the workload engine. For
example, the setting of dimension 1 and 2 are translated into
memory allocation parameters (i.e., which GPU or NUMA
DRAM to use and how many MR to register) of the engine.
Then, the workload engine will take these input parameters
to set up connections and generate traffic.

2Existing tools, e.g., Perftest, are arguably not designed for this type of
testing. They are performance benchmark tools. However, we are not aware
of any other tools can that test RDMA subsystems.

Algorithm 1 Search for Performance Anomalies
Input: S: initial anomaly set; T0: a high enough initial temperature;

Tmin: the lowest limit of temperature; n: the number of times SA
runs for a certain temperature;

Output: S: An updated anomaly set;
1: Pold ,Mold = MeasureRandomPoint(); pick a random point,

setup traffic and collect metrics as M
2: while T > Tmin do
3: for i = 0; i < n; i++ do
4: mutate Pold for a new application workload Pnew;
5: if MatchMFS(S,Pnew) then continue;
6: Mnew = MeasurePoint(Pnew);
7: ∆E = CompareMetric(Mnew,Mold);
8: if ∆E < 0 then
9: Pold = Pnew

10: else
11: the probability prob = exp(−∆E/T(i));
12: if rand(0,1)< prob then Pold = Pnew;
13: end if
14: if IsAnomaly(Mnew) then
15: new_m f s =ConstructMFS(Pnew);
16: Put new_m f s into S;
17: Pold ,Mold = MeasureRandomPoint(); pick another

random point when a new anomaly is found
18: end if
19: end for
20: T = T ∗α; where α is decay factor
21: end while
22: return S

5 Search for Performance Anomalies
The total size of our search space (i.e., the combination of
parameters) is on the order of 1036. Each experiment we do
requires 20-60 seconds, mostly depending on the number of
QPs to create and the number of MRs to register. This means
we cannot exhaust the search space. One naive approach is to
generate random input in the search space. This approach is
already much better than existing tests because the design of
our search space is more comprehensive than that in existing
tools (§7). However, similar to typical black-box fuzz testing
on software, random inputs can only find few anomalies and
cannot efficiently uncover complicated anomalies that require
multiple conditions to hold simultaneously.

5.1 Workloads Generation

We leverage two types of counters to guide the search. The
high-level approach is to use an optimization algorithm to
drive counters to extreme value regions by keeping mutat-
ing the test workloads. For performance counters, we drive
the counters to low-value regions. For diagnostics counters
(which map to unexpected events), we drive the counters to
high-value regions.

Our algorithm is based on simulated annealing (SA). SA
is a probabilistic algorithm to find the global minimum of a
given function. The idea is to keep mutating the input in the
direction of minimizing a given function. SA calls the func-



tion value energy. To avoid getting stuck at a local minimum,
SA maintains a temperature value. At the beginning of the
algorithm, the temperature is high and SA allows mutating
input in the direction of increasing the energy. As temperature
decreases during the search, SA is less likely to move the
input in the direction of increasing the energy. Finally, when
the temperature is below a certain threshold, every mutation
of the input must decrease energy. SA finishes when there is
no way to mutate the input to make the energy lower.

Algorithm 1 shows our algorithm that is based on SA. We
maintain a list of performance anomalies. Each anomaly is
an MFS (e.g., an area in the search space) that contains work-
loads to reproduce the performance anomaly. The search starts
from a random workload in the search space, and our algo-
rithm measures the counter values. In each iteration of SA,
we mutate the workload in one of our search dimensions (line
4). We test whether the new workload causes a performance
anomaly with our anomaly monitor. If so, we run our MFS
algorithm to determine the entire area in the search space
that belongs to this anomaly. We add the new anomaly to the
set and change the current workload to a random one. If the
new workload does not trigger a performance anomaly, we
measure the point by comparing counter values and decide
whether to move the current workload to the new one. We
always skip workloads that belong to an existing performance
anomaly for efficient search.

Our algorithm extends the standard SA algorithm in several
important ways to adapt it for our context. First, we compute
the energy in the following way: assuming the counter value
changes from A to B, we set the different in energy (∆E) to be
B−A

A for performance counters and A−B
B for diagnostic coun-

ters because we are minimizing performance counters and
maximizing diagnostic counters to trigger potential anomalies.
This also allows us to avoid value region problem (e.g., the
value regions of diagnostic counters are sometimes opaque).
Second, we do not require SA algorithm to find the actual
global optimum because we care about all potential anoma-
lies. We therefore always set a more relaxed temperature and
α that enable the algorithm to jump out of a certain stage
even when it has already run lots of iterations. In addition, we
maintain a set of performance anomalies (i.e., MFS). When
mutating the point, we compare the mutated point with our
existing MFS (line 5). Each MFS contains a list of parameters
ranges. If the mutated point matches all parameters ranges
of an MFS (i.e., the parameter value of this point is in the
MFS’s range), we claim this point belongs to the MFS and
skip testing it. This ensures that the future search does not
redundantly test workload already covered by the existing set
of anomalies.

5.2 Anomaly Monitor

Our anomaly monitor detects performance anomalies and
computes the MFS of them.

Anomaly Detection Condition. We use two conditions to

detect anomalies. First, if any pause frame is generated. Here
we use a metric called pause duration ratio. If the pause du-
ration ratio is 1%, this means for every second, transmission
is paused by 10 ms. We set our threshold to be 0.1%. The
reason is our experiment platform only has two servers and
our switch that connects the servers support line rate traffic,
so there is no network congestion to begin with. We set the
threshold to be above 0, because RNIC may generate a few
pause frames when the memory bus or PCIe bus is busy tem-
porarily, especially when connections are just set up. Second,
each RNIC has its maximum bits per second and maximum
packets per second in its specification that can be easily ver-
ified by running simple benchmarks. Without performance
anomalies, network traffic should be restricted by either one
of these upper bounds. If a workload’s throughput (in terms
of both metrics) is 20% lower than the upper bounds, it means
that the performance is likely to be restricted by some other
bottlenecks of the RDMA subsystem. Collie reports this and
runs the MFS algorithm below.

Minimal Feature Set (MFS). After we detect an anoma-
lous workload, we need to know what features of this work-
load actually trigger the anomaly. For example, if we currently
find a new anomaly that has 5 features. It may be the case that
3 features are already sufficient to reproduce this anomaly.
One approach is to use machine learning based algorithms to
generate decision trees or deep neural networks to locate the
area in the search space for the anomaly. However, machine
learning approaches usually require much more training data
and thus many more hardware experiments.

We instead use a heuristic approach. Since we only have
4 search dimensions with few factors, we just do a few tests
on each dimension to determine whether a factor belongs to
the MFS. For example, if our search algorithm finds a certain
workload using UD can cause a performance anomaly. We
test whether the same workload with RC and UC can cause
performance anomalies. If not, UD belongs to the MFS be-
cause it is necessary to reproduce the anomaly. To determine
the MFS of a dimension that is continuous (e.g., number of
connections), we discretize them manually into a set of value
regions and test each of them. Finer-granularity discretiza-
tion is acceptable because MFS algorithm only runs when
uncovering a new anomaly and the number of anomalies is
relatively small compared to the entire search space.

We report all the anomalies to RNIC vendors and we
can wait for their fixes. Unfortunately, the solutions to these
anomalies are case by case. Some anomalies require vendors
to spend a substantial amount of time on coming up with
solutions and the solutions may not be applicable for data
center operators immediately, such as hardware replacement.
Hence, developers need to avoid such anomalies instead of
waiting for a fix. Collie provides MFS to help developers
avoid such anomalies by changing application workload to
break the conditions in the MFS.

MFS helps developers to avoid anomalies in two areas.



Type RNIC Speed CPU PCIe NPS Memory GPU BIOS Kernel
A CX-5 DX 25 Gbps Intel(R) Xeon(R) CPU 1 3.0 x 16 1 128 GB - INSYDE 4.19
B CX-5 DX 100 Gbps Intel(R) Xeon(R) CPU 2 3.0 x 16 1 768 GB - AMI 4.14
C CX-5 DX 100 Gbps Intel(R) Xeon(R) CPU 2 3.0 x 16 1 384 GB V100 AMI 5.4
D CX-6 DX 100 Gbps Intel(R) Xeon(R) CPU 2 3.0 x 16 1 768 GB - AMI 4.14
E CX-6 DX 200 Gbps AMD EPYC CPU 1 4.0 x 16 1 2 TB A100 AMI 5.4
F CX-6 DX 200 Gbps Intel(R) Xeon(R) CPU 3 4.0 x 16 1 2 TB A100 AMI 5.4
G CX-6 VPI 200 Gbps AMD EPYC CPU 1 4.0 x 16 2 2 TB - AMI 5.4
H P2100G 100 Gbps Intel(R) Xeon(R) CPU 2 3.0 x 16 1 384 GB - AMI 5.4

Table 1: Testbed RDMA subsystems configurations. We use numbers in the name of concrete CPU types for confidentiality.

The first one is anomaly prevention. Before an application is
implemented, Collie lets developers restrict the search space
using their knowledge of their applications to represent all
the possible workloads. Then, Collie outputs whether the
restricted search space contains performance anomalies. If not,
assuming the developers’ understanding of their applications
is correct, the application won’t encounter any performance
anomaly found by Collie. The second one is debugging. When
an existing application unfortunately encounters anomalies,
we can run Collie on the RDMA subsystem and generate
all the MFS. Comparing the application with the generated
MFS, Collie provides several suggestions that help to break
the triggering conditions. We present two real cases to show
how MFS helps developers in §7.3.

One caveat of our approach is that we are not able to know
the root causes of these anomalies given the black-box nature
of the RNICs and other hardware components in the RDMA
subsystem. This means it may be the case that multiple MFS
are actually due to the same anomaly (i.e., the same hardware
bug). This is acceptable because the goal of MFS is to ac-
celerate the search algorithm by eliminating redundant test
cases and help developers understand what features of the
workloads can trigger the anomaly. We anyway need to report
all the anomalies (i.e., all the MFS) we found to the vendors
and that is also the best we can do given the RNIC black-box
hardware nature.

6 Implementation
The workload generator and the anomaly monitor are written
in ~2100 lines of Python. The workload engine is imple-
mented with ~2000 lines of C/C++. We directly use monitor
tools from vendors to collect hardware counters (both perfor-
mance and diagnostic counters) from the RDMA subsystem.

The workload engine is implemented with the verbs API
and rdma-core-34.0 libraries [38]. In deployment, the Mel-
lanox RNIC uses mlx5 driver (OFED 5.2-1.0.4.0) and the
Broadcom RNIC uses bnxt driver (1.10.1.216.2.89.0). The
workload engine set up connections by TCP out-of-band trans-
mission. When all connections are set up, the engine starts to
generate workload.

The anomaly monitor collects primary metrics, such as
throughput and pause frame duration, four times per iteration.
It first decides whether the traffic is stable and then compares
the primary metrics (e.g., bits per second, packets per second)

with the pre-defined thresholds.
The workload generator collects counters using monitors

provided by vendors. These monitors provide counters every
second. Collie fetches these counters four times per iteration
and uses the average results.

7 Evaluation and Experience
We evaluate Collie on 8 different RDMA subsystems. Table 1
shows the hardware and related configurations. We use the
same anomaly detect conditions as described in §5.2

7.1 Performance Anomalies Found

Before we build Collie, we already know 3 existing anomalies.
Collie can find all the existing ones and find 15 new anomalies.
All of them are reported to our vendors and are acknowledged
by them. Table 2 shows the 18 anomalies. We only present
those found on subsystem F and H because anomalies found
on other subsystems are subsets of those found on F. Ap-
pendix A provides details about these anomalies, including
the exact workload, as well as the explanations and solutions
from vendors. Here we choose two tricky anomalies to show
the importance of Collie’s systematic search.

Anomaly #4: Bidirectional RC READ with large WQE
batch size, long SG list, and a few connections causes PFC
pause frames. Our vendors have successfully reproduced this
anomaly in their environment using Collie’s traffic genera-
tor and acknowledged it, but currently there is no fix. This
anomaly cannot be found by existing approaches such as
using Perftest to generate workloads, because Perftest
does not support flexible WQE and SG list batching strategies.
Though Perftest is not designed for this purpose, it is the
prevalent tool to uncover performance anomalies. To the best
of our knowledge, we don’t see any other state-of-the-art work
address this problem, which also shows that Collie is the first
work to fill this vacancy.

Anomaly #10: Bidirectional RC WRITE with large WQE
batch size, particular message pattern, and a few connections
causes PFC pause frames. This anomaly is not captured by
existing approaches (e.g., running current applications) but we
successfully reproduce it by slightly modifying our production
RDMA RPC library: when users call the library to send a
message, it will try to send as many messages as possible in a
WQE batch. The batch size is highly dependent on the timeout
value. If the application is throughput sensitive rather than



RNIC Direc. Transport MTU WQE SGE WQ depth Message Pattern # of QPs Symptom
#1 CX-6 - UD SEND - ≥64 - ≥ 256 - - pause frame
#2 CX-6 - UD SEND - ≤8 - ≥1024 ≤1KB ≥≈16 low throup.
#3 CX-6 - RC READ 1K - - - ≥16KB - pause frame
#4 CX-6 Bi- RC READ - ≥32 ≥4 - - ≥≈160 pause frame
#5 CX-6 - RC SEND 1K ≥64 - ≥1024 ≥2KB and ≤8KB - pause frame
#6 CX-6 - RC SEND 1K ≤16 ≥2 ≥1024 ≤1KB ≥≈32 low throup.
#7 CX-6 - RC WRITE - No - - ≤1KB and ≥≈12K MRs - low throup.
#8 CX-6 - RC WRITE - No - ≤16 ≤1KB ≥≈500 low throup.
#9 CX-6 Bi- - - - ≥3 - mix of ≤1KB & ≥64KB - pause frame

#10 CX-6 Bi- RC WRITE - ≥64 - - mix of ≤1KB & ≥64KB ≥≈320 pause frame
#11 CX-6 Bidirectional cross-socket traffic on particular AMD servers pause frame
#12 CX-6 Particular GPU-Direct RDMA traffic on particular servers pause frame
#13 CX-6 Co-existence of loop traffic and receiving traffic pause frame
#14 P2100 Bi- RC 4K - ≥4 - - ≥≈1300 low throup.
#15 P2100 - UD SEND - - - ≥64 - ≥≈32 pause frame
#16 P2100 - RC READ 1K ≥8 - - - ≥≈500 pause frame
#17 P2100 - RC SEND - ≤16 - ≥128 ≤1KB ≥≈64 pause frame
#18 P2100 Bi- RC 1K ≥32 - - ≤64KB ≥≈30 pause frame

Table 2: Performance anomalies found on subsystem F and H with the necessary conditions to trigger them. Anomalies marked with green
color are new anomalies found by Collie. Rest are the anomalies we know before building Collie.

latency sensitive, the timeout value can be set high, which
allows a larger batch size. Currently the timeout value is set
small because most applications supported by this library
are latency sensitive. However, by changing this value we
successfully enlarge the WQE batch size and the conditions of
#10 are all met. This shows the importance of the anomalies
found by Collie, as well as how Collie can capture those
anomalies missed by existing solutions.

We try our best to reproduce the anomalies found by Collie
using existing workload generators (e.g., Perftest), only 4
of them (#3, #8, #13, #15) can be reproduced with very careful
parameters tuning. Rest anomalies are all outside the search
space of existing approaches.

7.2 Running Time for Anomaly Search

To evaluate the efficiency of performance anomaly search, we
compare Collie with two baselines: (1) random input genera-
tion in our search space and (2) Bayesian Optimization (BO),
a widely used method in search problem [31]. We implement
the BO approach based on [31]. We set the counter values
as BO’s optimization target. Our vendors provide us with 9
diagnostic counters. For Collie and BO, we first generate 10
random points. We then compute the standard deviation over
the mean of the counter values collected in the first 10 run and
use the result to rank these diagnostic counters in decreasing
order. Both Collie and BO optimize each diagnostic counter
in this order. For a fair comparison, we use MFS to enhance
BO as well. In this section, we use subsystem F as an example.
We run each search for 10 hours.

Figure 4 shows the running time to find performance
anomalies. Random input (i.e., fuzzing) can already find 7
anomalies that only require simple conditions to trigger. BO
does improve efficiency but to a very limited extent. BO can
speed up the search process but only find 8 anomalies with

the given time. We analyze the optimization process of BO
and find that it is not able to optimize the corresponding coun-
ters. Our guess is that BO works well when counter values
are smooth in the search space. However, the counter values
in our search space can have sudden changes, because some
discrete dimensions have a huge impact on the counter values
(e.g., QP type). Collie uses a simulated annealing based algo-
rithm to optimize the counter values and successfully speed
up the search process. Given limited time, it can find all the
performance anomalies of this RDMA subsystem. We be-
lieve this improvement comes from the optimization process:
driving counters to extreme regions is more likely to trigger
performance anomalies. It is possible that a more efficient
search algorithm (e.g., a fine-tuned BO, reinforcement learn-
ing) can perform better, and it is worth future exploration.
However, our goal here is to demonstrate that existing simple
optimization algorithms, such as simulated annealing, can
search efficiently with these hardware counters.

Collie uses diagnostic counters and MFS to further speed
up the search. Now we break down their contribution to our
overall search speed. Figure 5 shows the result.

The value of diagnostic counters. Figure 5 shows that
with performance counters, Collie (Perf) has already found
11 of the 13 anomalies, including the 3 existing ones. This
proves that the performance counters are informative and can
be used to improve search efficiency. It shows the generality
of Collie because performance counters are general and pro-
vided by all commodity RDMA subsystems. Figure 5 also
shows that using diagnostic counters can further improve the
speed. Given limited time, Collie (Diag) can uncover more
anomalies and is faster. For example, Anomalies #7 and #8 are
not captured by Collie (Perf) because there is no performance
change during the search, but Collie (Diag) can observe the



0 1 2 3 4 5 6 7 8 9 10 11 12 13
Anomalies found

0

100

200

300

400

500

600

Ru
nn

in
g 

tim
e 

(m
in

ut
es

)

Random BO Collie

Figure 4: Mean time to find anomalies with random input generation,
BO, and Collie. Error bars denote standard deviations. There is no
red bar starting from 8, and no purple bar starting from 9, because
random input generation and BO can only find 7 and 8 anomalies,
respectively.

increase of RNIC internal cache miss and uncover them.

The value of minimal feature set (MFS) The main differ-
ence between SA and Collie is whether MFS is applied. With
MFS, the efficiency of all approaches (both using diagnos-
tic counters and using performance counters) is significantly
improved. For example, Collie (Diag) only uses about half
of the time to uncover all the anomalies found by SA(Diag).
MFS improves efficiency by eliminating redundant tests from
the search space. Otherwise, approaches without MFS may
be stuck in the area of an uncovered anomaly.

To understand why increasing diagnostic counter values
can help to find anomalies and how MFS works, here we
use Receive WQE Cache Miss counter as an example. We do
not rely on the meaning of these diagnostic counters during
the search. To the best of our knowledge, the counter means
the number of times that RNICs need to issue extra DMA
operations to fetch receive WQE from host DRAM.

Figure 6 shows the diagnostic counter values during the
search. The random input generation approach (the orange
line) does not increase the diagnostic counter value and thus
cannot find many performance anomalies. Collie w/o MFS
(the green line) can drive the diagnostic counter value very
high, but it cannot find many distinct performance anomalies
because further increasing the counter value in the neigh-
boring regions of existing performance anomalies wastes
time. Collie (the blue line) is effective in finding performance
anomalies, because it can both increase the diagnostic counter
value to find application workloads that cause anomalies and
also do not need to test application workloads that belong
to the same anomaly. Figure 6 shows that most anomalies
are found when the diagnostic counter value is high. This
also supports the intuition that it is likely to trigger perfor-
mance anomalies when the diagnostic counter value is driven
to extreme regions, which indicates the RDMA subsystem
is under pressure. Some anomalies in Figure 6 do not show
a high value of this counter. This is mainly due to that they
are anomalies that can be easily triggered. They are usually
triggered at the beginning of the search process (left corner of
Figure 6) and another corresponding diagnostic counter value

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Anomalies found

0

100

200

300

400

500

600

Ru
nn

in
g 

tim
e 

(m
in

ut
es

)

Collie w/o MFS(Perf)
Collie w/o MFS(Diag)

Collie(Perf)
Collie(Diag)

Figure 5: Mean time to find anomalies. (Diag) means diagnostic
counters, and (Perf) means performance counters. Error bars denote
standard deviations.

is high. For example, Anomaly #13 has simple triggering con-
ditions and is usually found very soon. It does not increase the
Receive WQE Cache Miss counter but will increase another
counter, the counter of PCIe Internal Back Pressure.

7.3 Using Collie for Application Design

We use Collie in the development and performance debugging
of two key RDMA applications.

First, Collie provides design suggestions for our self-
developed efficient RDMA RPC library during its design
and implementation. The library needs to be CPU-efficient,
and we thus only consider RC as the transport because it is
the only transport that supports all one-sided RDMA oper-
ations (i.e., READ, WRITE) and ensures reliable messages.
In addition, major services that use this RPC library will
mainly be deployed on subsystem B and C. Given the search
space, Collie provides two suggestions to the developers. (1)
Anomaly #4 is in the restricted search space if the RDMA
RPC library uses READ, large WQE batch size, and a long
SG list to improve throughput and shape the message format.
(2) The library needs to use SEND/RECV to deliver small
control messages and generally keeps a large receive queue
in case of receive-not-ready error. This can potentially trigger
Anomaly #5. Unfortunately, both #4 and #5 temporarily have
no fix, so Collie suggest developers (1) use RDMA WRITE
to transmit data in a batch and (2) configure receive queue
depth carefully in SEND/RECV for small control messages
transmission. This RDMA based RPC library achieves ex-
pected performance and is currently supporting three major
services in production.

Second, Collie helps an distributed machine learning
(DML) application based on BytePS [14] bypass anomalies
during its further development in our production environ-
ment. Our DML application encountered anomaly #9 when
deploying on our new subsystem E. We worked with multiple
vendors (RNIC, server, CPU), but for several weeks we didn’t
find the root cause or the fix for this anomaly. During this
time, we ran Collie and compared the anomalous application
with the MFS we got. We found that the application’s behav-
iors matched one of the MFS: (1) use a long SG list to send
tensors with several meta data and (2) the message pattern of



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Running time (minutes)

0.0

0.5

1.0
No

rm
al

ize
d 

co
un

te
r Random SA(Diag) Collie(Diag)

Figure 6: Diagnostic counter values (Receive WQE Cache Miss) during the search. Counter values are normalized based on the maximum value
we observed in the search. Red crossings denote the performance anomalies found by Collie. Red triangles denote the performance anomalies
found by random input generation. Red squares denote the performance anomalies found by Collie without MFS. Collie (the blue line) is flat
for a few minutes after finding a new performance anomaly. This is to represent the time needed for extracting the MFS.

tensors and meta data is a typical pattern that contains mix of
short and long messages. Collie suggested the developers to
avoid these conditions. The developers hence bypassed this
anomaly before vendors’ fix is ready.

7.4 Implications of the Performance Anomalies Found

After careful analysis of the anomalies found by Collie, we
have several interesting and important observations.

Holistic performance testing/tuning over entire RDMA
subsystems is important. With our vendors’ help, we try
our best effort to present the root causes of these anomalies
in Appendix A. The root causes can be bottlenecks from
RNIC internals, PCIe controllers, and host topologies (cross
socket communication). This is because the RDMA network
performance is highly related to the entire subsystem and the
holistic test is thus important. Besides, we need to configure
systems carefully (MTU, PCIe, NUMA, IOMMU, etc.) to
fully leverage RDMA’s performance [17, 30]. Collie shows
that it is sometimes difficult to choose what configuration to
use. For example, comparing the Anomaly #14 with other
cases related to the MTU setting (e.g., #6), we observe there
is no optimal MTU setting for all types of RDMA subsystems.
This also indicates that data center operators have to test
various RDMA subsystem configurations and tune the system
carefully before deploying them.

Opaque resource limitation of the RDMA subsystems.
RDMA virtualization, especially performance isolation is im-
portant for deploying RDMA to the public cloud environment.
Researchers have spent a lot of effort and proposed several
solutions [12, 19, 36, 43, 45]. However, anomalies found by
Collie suggest that there are new challenges. Existing ap-
proaches mainly focus on the isolation of visible resources
like verbs structures (e.g., QP, MR, CQ), pinned memory, and
bandwidth. However, there exist resources that are opaque for
developers and data center operators. For example, the RNIC
has limited caches that store many data structures, including
connection context (well known as QPC) and receive WQE.
Anomalies #1, #3, #4, #5 show that severe WQE cache miss
can have a huge impact on performance. Hence, it is possible
that a connection with a specific message pattern affects an-
other connection by triggering cache misses, even when the
bandwidth and other resources are well isolated. We therefore
believe it is necessary to take these invisible resources into

consideration when enforcing RDMA performance isolation,
especially in public clouds.

Does Ethernet-based RDMA need end-to-end flow con-
trol? Currently there is no end-to-end flow control mechanism
(e.g., the sliding window for TCP) for production Ethernet-
based RDMA deployment (i.e., RoCEv2). Collie shows that
this is a major barrier for RDMA subsystems to achieve high-
performance and reliability. For example, many anomalies
(e.g., #9 and #12) show that the host limitation can slow down
RNIC’s outbound rate (dispatching received data to host mem-
ory). This makes the receiver cannot consume packets as fast
as the sender sends. Without end-to-end flow control, the Ro-
CEv2 now can only rely on PFC, the hop-by-hop flow control
mechanism. PFC helps to avoid such overflow packet drop
but can cause catastrophic consequences [11, 13]. Note that
RDMA congestion control [20, 28, 46] mainly targets in-
network congestion, so it is orthogonal. A similar observation
has been shown in IRN [29], but they mainly focus on in-
network behaviors. Collie shows that, in addition to switches,
the hosts can also generate PFC pause frames, which requires
attention when deploying RDMA in production.

8 Discussion and Future Work
Search space. Collie mainly focuses on how specific applica-
tion workloads can stress the RDMA subsystems and trigger
performance anomalies. We therefore focus on a simple set-
ting of two RNICs and assume the network is free of anomaly.
In addition, we temporarily ignore control path behaviors and
the inter-arrival time between requests of a connection. The
main reason is that adding these factors substantially enlarge
the size of our search space. How to efficiently expand Col-
lie’s search space is an interesting direction for exploration.

Search algorithm. Collie uses simulated annealing based
algorithm with minimal feature set (MFS) to search efficiently.
Though powerful data centers can run Collie on multiple ma-
chines for a longer time, the search algorithm is also important.
According to the MFS found by Collie, the expected time for
a random approach is tens of days to find some anomalies that
require complicated triggering conditions. There are many
other search algorithms alternatives that can be leveraged,
such as reinforcement learning. Integrating more search algo-
rithms into Collie is another interesting direction to explore.

Generality of Collie. We believe that Collie can be used for



any type of RDMA subsystem or even subsystems with other
types of NICs. For example, though the link/transport proto-
cols are different for Infiniband and RoCEv2, the NIC internal
structures should be similar (e.g., both can use Mellanox CX-
6 VPI RNIC). Collie only relies on non-proprietary counters
that expose NIC internal status. Therefore, this methodol-
ogy should be generalizable to any NIC in any deployment
environment if similar counters are available.

Analysis of Performance Anomalies. Collie is designed to
uncover anomalies and help to bypass them from the perspec-
tive of data center operators, so it assumes minimal hardware
knowledge of RDMA subsystems for generality and does
not directly analyze the underlying causes. However, since
the anomalies found by Collie can be severe (e.g., triggering
PFC pause storms), we believe to fully understand them is
also an important direction to explore. For example, as men-
tioned in §7.4, many anomalies are due to bottlenecks on
some opaque resources. Both RNIC vendors and data cen-
ter operators hence need to understand what extra resources
should be considered if they want to provide performance
isolation for RDMA in a public cloud.

9 Related Work
Hardware bottlenecks in host networking. With the fast
growth in NIC performance, researchers have noticed several
potential hardware bottlenecks in host networking. Neuge-
bauer et al. [30] study the implication of PCIe performance in
host networking. Farshin et al. [6] examine when and when
not Intel Data Direct I/O technology can speed up host net-
working by allowing NIC to access CPU’s last-level cache
directly. Kalia et al. [15] observe the scalability bottlenecks of
caching per-connection metadata in RNIC. Stanko et al. [32]
study how the number of connections and memory regions
affect performance. These works have raised our attention
to RNIC hardware behaviors. Our work is on a different an-
gle: we systematically uncover the performance anomalies
that can be triggered by specific application workload due to
hardware bottlenecks.

Fuzz testing. Our techniques are in the broader category
of fuzz testing. There are three types of fuzz testing: black-
box [25,26], white-box [7,9,10], and gray-box fuzzing [1,40].
Black-box fuzzing is to generate random inputs to test a pro-
gram, and usually black-box fuzzing can only uncover shallow
bugs. In our context, this is also true that using randomly gen-
erated application workload can only uncover a small set of
anomalies (§7). White-box fuzzing is to use symbolic exe-
cution on source code to guide the fuzzer to generate inputs
that can have high coverage. We do not have the internal de-
signs of the various components within an RDMA subsystem,
so we cannot use white-box approaches. Gray-box fuzzing
in the software context is to use the coverage in the control
flow graph to guide the fuzzer to incrementally generate in-
puts that can lead to larger coverage. Our approach is similar
to gray-box fuzzing that we both use simulated annealing

and mutation-based test case generation. However, the key
difference is that we use hardware counters in the RDMA
subsystem to guide the search rather than the coverage on the
control flow graphs of the source code.

Application design on top of RDMA. Many RDMA ap-
plication designs leverage specific RDMA performance char-
acteristics, and some already try to circumvent certain RNIC
performance anomalies. HERD [16] uses UD SEND and UC
Write to implement an RPC library for reduced RNIC packet
processing overheads and better scalability. FaSST [18] and
eRPC [15] uses UD to further mitigate RNIC scalability bot-
tlenecks in RPC libraries. Kalia et al. [17] provide guidelines
to optimize HERD’s transport by considering PCIe bottle-
necks. FaRM [4, 5] uses RC to access remote in-memory key-
value stores, so that it can use RDMA 1-sided READ/WRITE
operation for reduced CPU overheads. Our goal is comple-
mentary: we systematically uncover the set of performance
anomalies of RDMA subsystems that application developers
need to be aware of. We show that for RDMA developers,
in reality, there is no optimal choice for a particular design
decision (e.g., all transport types have certain performance
anomalies). Developers therefore need to have a holistic view
of all the design decisions and the entire RDMA subsystem
before designing and implementing RDMA applications.

10 Conclusion
RDMA has been increasingly used in the industry for its low
latency and reduced CPU overheads. Performance anomalies
hurt application performance and can lead to catastrophic
consequences (e.g., deadlocking the data center network). We
build Collie, a tool to help RDMA users to find performance
anomalies of the entire RDMA subsystems, without the need
for access to any hardware internals design. Collie constructs
a comprehensive search space for RDMA application work-
loads and finds performance anomalies by using simulated
annealing to optimize two types of vendor-provided counters.
We evaluate Collie on 8 commodity RDMA subsystems and
Collie found 15 new performance anomalies that are all ac-
knowledged by the vendor. 7 of them are already fixed under
vendors’ guidance. We also present our experience in using
Collie to guide our development of an RDMA RPC library
and help our distributed machine learning applications bypass
performance anomalies before vendor fix is ready. Collie is
available at https://github.com/bytedance/Collie.

Acknowledgement
We thank Alvin R. Lebeck, Xiaowei Yang, Xi Wang, Wei Bai,
Mahmoud Elhaddad, Jitu Padhye, and Shachar Raindel for
their helpful comments and discussion. We thank NVIDIA,
Broadcom, and AMD for their strong technical support. We
thank our shepherd Costin Raiciu and other anonymous re-
viewers for their insightful feedback. Our work is partially
supported by an Amazon Research Award, a Meta Research
Award, and an IBM Academic Award.

https://github.com/bytedance/Collie


References
[1] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,

and Abhik Roychoudhury. Directed Greybox Fuzzing.
In CCS, 2017.

[2] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett,
Miguel Castro, Wonhee Cho, Joshua Cowhig, Niko-
las Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, et al. A1: A Distributed In-Memory Graph
Database. In SIGMOD, 2020.

[3] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on Reliable Connection with Efficient Re-
source Sharing. In EuroSys, 2019.

[4] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In NSDI, 2014.

[5] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In SOSP, 2015.

[6] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr.,
and Dejan Kostić. Reexamining Direct Cache Access to
Optimize I/O Intensive Applications for Multi-hundred-
gigabit Networks. In USENIX ATC, 2020.

[7] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-
Based Directed Whitebox Fuzzing. In ICSE, 2009.

[8] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When Cloud Storage
Meets RDMA. In NSDI, 2021.

[9] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-Based Whitebox Fuzzing. In PLDI, 2008.

[10] Patrice Godefroid, Michael Y. Levin, and D. Molnar.
Automated Whitebox Fuzz Testing. In NDSS, 2008.

[11] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In SIGCOMM, 2016.

[12] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. MasQ: RDMA
for Virtual Private Cloud. In SIGCOMM, 2020.

[13] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Deadlocks in
Datacenter Networks: Why Do They Form, and How to
Avoid Them. In HotNets, 2016.

[14] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui,
and Chuanxiong Guo. A Unified Architecture for Ac-
celerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters. In OSDI, 2020.

[15] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In NSDI,
2019.

[16] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using RDMA Efficiently for Key-Value Services. In
SIGCOMM, 2014.

[17] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design Guidelines for High Performance RDMA
Systems. In USENIX ATC, 2016.

[18] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
OSDI, 2016.

[19] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:
Software-based Virtual RDMA Networking for Con-
tainerized Clouds. In NSDI, 2019.

[20] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control. In
SIGCOMM, 2019.

[21] Ashlie Martinez and Vijay Chidambaram. CrashMon-
key: A Framework to Automatically Test File-System
Crash Consistency. In HotStorage, 2017.

[22] Mellanox. Device Proprietary Counters.
https://docs.nvidia.com/networking/display/
WINOFv55052000/Device+Proprietary+Counters.

[23] Mellanox. NEO-Host. https://
support.mellanox.com/s/productdetails/
a2v50000000N2OlAAK/mellanox-neohost.

[24] Mellanox Adapters Programmer’s Ref-
erence Manual (PRM). https://
www.mellanox.com/related-docs/user_manuals/
Ethernet_Adapters_Programming_Manual.pdf,
2021.

[25] Barton Miller, Mengxiao Zhang, and Elisa Heymann.
The Relevance of Classic Fuzz Testing: Have We Solved
This One? IEEE Transactions on Software Engineering,
page 1–1, 2020.

https://docs.nvidia.com/networking/display/WINOFv55052000/Device+Proprietary+Counters
https://docs.nvidia.com/networking/display/WINOFv55052000/Device+Proprietary+Counters
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf


[26] Barton P. Miller, Louis Fredriksen, and Bryan So. An
Empirical Study of the Reliability of UNIX Utilities.
Commun. ACM, 33(12):32–44, December 1990.

[27] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store. In USENIX ATC, 2013.

[28] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. TIMELY: RTT-Based Congestion Control for the
Datacenter. In SIGCOMM, 2015.

[29] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting Network Support for RDMA.
In SIGCOMM, 2018.

[30] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End Host
Networking. In SIGCOMM, 2018.

[31] Fernando Nogueira. Bayesian Optimization:
Open source constrained global optimization
tool for Python. https://github.com/fmfn/
BayesianOptimization, 2014.

[32] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos Aguilera. Storm: A Fast Transactional Dataplane
for Remote Data Structures. In SYSTOR, 2019.

[33] OSU benchmarks. https://mvapich.cse.ohio-
state.edu/benchmarks/, 2021.

[34] OFED perftest. https://github.com/linux-rdma/
perftest, 2021.

[35] IEEE DCB. 802.1Qbb - Priority-based Flow Control.
https://1.ieee802.org/dcb/802-1qbb/, 2021.

[36] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R. Gross.
A Hybrid I/O Virtualization Framework for RDMA-
Capable Network Interfaces. In VEE, 2015.

[37] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle Flow Control: Avoiding Deadlock in Loss-
less Networks. In SIGCOMM, 2019.

[38] Linux rdma-core. https://github.com/linux-
rdma/rdma-core, 2021.

[39] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA is Turing complete, we just did not know
it yet!, 2021.

[40] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security, 2017.

[41] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and Concurrent RDF Queries with
RDMA-Based Distributed Graph Exploration. In OSDI,
2016.

[42] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F.
Wenisch, Monica Wong-Chan, Sean Clark, Milo M. K.
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
Hassan M. G. Wassel, Behnam Montazeri, Simon L.
Sabato, Joel Scherpelz, and Amin Vahdat. 1RMA: Re-
Envisioning Remote Memory Access for Multi-Tenant
Datacenters. In SIGCOMM, 2020.

[43] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In SOSP, 2017.

[44] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lin-
tao Zhang, and Lidong Zhou. Fast Distributed Deep
Learning over RDMA. In EuroSys, 2019.

[45] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in Hard-
ware Kernel-Bypass Networks. In NSDI, 2022.

[46] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA
Deployments. In SIGCOMM, 2015.

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://1.ieee802.org/dcb/802-1qbb/
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core


A Performance Anomalies Found
More details of these anomalies and the lesson we learn are
included in this section. We present a concrete example of
each anomaly and try our best to simplify each anomaly so
that they can be reproduced easier. It is possible to find milder
or stricter conditions that trigger the anomaly. We, to the
best of our knowledge, also categorize these performance
anomalies to their root causes based on our observation and
conversations with our vendors.

A.1 Subsystem F with Mellanox 200 Gbps CX-6 VPI

Root cause #1: Receive WQE cache misses bottleneck
RNIC receiving rate.

(New) Anomaly #1: UD with large WQE batch size and
long WQ causes PFC pause frames and drastic throughput
drop. Collie observes that the pause duration ratio can be up
to ≈ 20.0% with only a single UD QP. The pause duration
ratio means that RNIC is asking the corresponding switch
port to pause for ≈ 200 milliseconds within one second on
average. We share the NIC vendor with our traffic engine
tool and the running command. They have reproduced the
anomaly in their environments, but the root cause is still not
clear yet. Therefore, we claim this anomaly not fixed yet. To
the best of our knowledge, it is likely due to the cache miss
triggered by the pre-fetch mechanism for the receive WQE.
This bottlenecks the receiver from receiving traffic.

Here is a simplified concrete trigger setting of Anomaly
#1: There is 1 connection of UD QP using SEND/RECV
Opcode. Each QP has 1 sending MR of 64KB and 1 receiving
MR of 64KB. Each QP has a work queue of length 256 (i.e.,
max_send/recv_wr = 256). The MTU is 2KB. The sender
keeps sending 64 requests in a batch. Each request only has
one SG element and a fixed size of 2KB.

(New) Anomaly #2: UD with small WQE batch size, long
WQ, small messages, and a few connections causes throughput
to drop without pause frames.

This anomaly is similar to #1 but more tricky and has a
different end-to-end symptom. Unlike #1, Collies does not ob-
serve PFC pause frames when the setting is slightly different
from #1: if the sender does not post sending requests in batch
or the batch size is small (e.g., less than 8) and the messages
are relatively small (e.g., 512B, 1KB), the throughput will
drop by more than 20% without any PFC pause frame trig-
gered when the receiver has an extremely long work queue. If
we set a smaller work queue for the receiver, the throughput
returns to the line rate. This anomaly is also reproduced and
acknowledged by NIC vendor. We conjecture that it has a sim-
ilar root cause to #1, but due to unknown RNIC bottlenecks,
it behaves differently that the throughput drops without pause
frame.

Here is a simplified concrete trigger setting of Anomaly
#2: There are 16 connections of UD QP using SEND/RECV
Opcode. Each QP has 1 sending MR of 64KB and 1 receiving
MR of 64KB. Each QP has a work queue of length 1024. The

MTU is 1KB. The sender keeps sending 4 requests in a batch.
Each request only has one SG element of 1KB.

(New) Anomaly #3: RC READ with large messages causes
PFC pause frames when MTU is under 1500 (the default
MTU for Ethernet).

We observe the throughput drops drastically once we use
RDMA READ opcode with 1500 MTU (1024 for RDMA),
the default value for our data centers. The pause duration can
be up to 10% and throughput drops to less than half. We
report this to our NIC vendor and they tell us the low MTU
may trigger the RNIC internal packet processing bottleneck
for this 200 Gbps NIC. We carefully survey the potential
effect of MTU modification in our deployment and modify
the MTU from 1500 to 4200, which supports 4096 as RDMA
MTU. This anomaly is successfully fixed in this way.

Here is a simplified concrete trigger setting of Anomaly
#3: There are 8 connections of RC QP using Read opcode.
Each QP has 1 sending MR of 4MB and 1 receiving MR of
4MB. Each QP has a work queue of length 128. The MTU
is 1KB. The sender keeps sending RDMA READ requests.
Each request only has one SG element and a fixed size of
4MB.

(New) Anomaly #4: Bidirectional RC READ with large
WQE batch size, long SG list, and a few connections causes
PFC pause frames, even when MTU is set to 4200 (4096 for
RDMA).

This anomaly is tricky but severe. Even with 4200 MTU
(Anomaly #3 is solved), Collie observes about 30% PFC
pause duration ratio that when bidirectional RDMA READ
happens and both sides post a large number of requests in
a batch (e.g., 32), each request consists of multiple scatter
gather element (e.g., 4) and there are a few connections (e.g.,
≈ 160). As usual, this newly found anomaly is reported to the
vendor and they have reproduced and confirmed the anomaly.
For now, the root cause of this anomaly is still unknown.
Therefore, we claim this anomaly not fixed yet.

Here is a simplified concrete trigger setting of Anomaly #4:
There are 80 connections of RC QP using Read opcode for
each direction. Each QP has 1 sending MR of 64KB and 1
receiving MR of 64KB. Each QP has a work queue of length
128. The MTU is 4KB. The sender keeps sending 128 requests
in a batch. Each request has 4 SG elements and a fixed size
of 128B.

(New) Anomaly #5: RC SEND with small MTU, large WQE
batch, long WQ, and long messages causes PFC pause frames
and drastic throughput drop.

(New) Anomaly #6: RC SEND with small MTU, small WQE
batch, large SG list batch, long WQ, small messages, and a
few connections causes reduced throughput without any pause
frame.

They are similar to UD ones (Anomaly #1 and #2) but
have a more complex and stricter trigger. For example, Collie
observes such anomaly only when MTU is small (e.g., 1024
for RDMA), work depth exceeds 1K for each QP as well as



post multiple receive WQE in a batch. These anomalies are
different because they have different QP types and stricter
trigger conditions. For example, those anomalous application
workloads in #1 and #2 won’t trigger anomalies if we only
switch the type of QP from UD to RC. Several discussion
with our vendors tells us that the Reliable Connection type
contains some subtle variance inside the RNIC that result in
such difference. These two are currently not fixed yet.

Here is a simplified concrete trigger setting of Anomaly #5:
There is 1 connection of RC QP using SEND/RECV opcode.
Each QP has 1 sending MR of 64KB and 1 receiving MR of
64KB. Each QP has a work queue of length 1024. The MTU
is 1KB. The sender keeps sending 64 requests in a batch. Each
request has 2 SG elements and a fixed size of 2KB.

Here is a simplified concrete trigger setting of Anomaly
#6: There are 32 connections of RC QP using SEND/RECV
opcode. Each QP has 1 sending MR of 64KB and 1 receiving
MR of 64KB. Each QP has a work queue of length 1024. The
MTU is 1KB. The sender keeps sending 8 requests in a batch.
Each request has 2 SG elements and a fixed size of 1KB.

Root cause #2: Interconnect Context Memory cache
misses reduce RNIC sending rates.

(New) Anomaly #7: RC WRITE with many QPs, small mes-
sages, small WQ depth, and small WQE batch size causes
reduced throughput.

(New) Anomaly #8: RC WRITE with many MRs, small mes-
sages, and small WQE batch size causes reduced throughput.

Though these two anomalies are well-known as the RDMA
scalability problem, our real applications do not meet them
even when the number of QPs exceeds 10K and the number of
MRs exceeds 100K. However, Collie uncovers these two so
we classified them into New anomalies. We take a deep look
into how Collie discovers them and have many discussions
with our vendors. We find our experience interesting and wor-
thy of sharing: RNIC caches many necessary structures on its
cache (e.g., memory translation table and connection context).
When a request triggers cache miss, the RNIC has to issue
extra PCIe operation to fetch them from the host DRAM. This
will certainly induce extra PCIe latency for processing this
request (victim request). However, RNIC is highly pipelined,
so even when the victim request has finished the PCIe oper-
ation, it may still have to wait for the other pipeline stages
to get ready (e.g., a previous long egress request blocks this
short egress request). Therefore, if the request size is rela-
tively large enough, the cache miss will not have a large effect
on end-to-end performance because the overhead is hidden
due to the pipeline.

Here is a simplified concrete trigger setting of Anomaly #7:
There are 480 connections of RC QP using RDMA WRITE
opcode. Each QP has 1 sending MR of 64KB and 1 receiving
MR of 64KB. Each QP has a work queue of length 16. The
MTU is 1KB. The sender keeps sending requests without
WQE batch. Each request has 1 SG element and a fixed size
of 512B.

Here is a simplified concrete trigger setting of Anomaly #8:
There are 24 connections of RC QP using RDMA WRITE
opcode. Each QP has 1024 sending MR of 64KB and 1024
receiving MR of 64KB. Each QP has a work queue of length
128. The MTU is 1KB. The sender keeps sending requests
without WQE batching. Each request has 1 SG element and a
fixed size of 512B.

Root cause #3: PCIe controller blocks RNIC from read-
ing host memory.

(Old) Anomaly #9: Bidirectional traffic with a mixture of
small and large messages in an SG list on particular AMD
servers causes PFC pause frames and drastic throughput
drop.

This anomaly is found by one of our production applica-
tions that keeps sending such message patterns (described in
2). The root cause of this anomaly is due to PCIe ordering is-
sue. If the RNIC on the AMD server is not configured as PCIe
relaxed ordering device, a DMA request may be blocked by
the previous one. Therefore, when bidirectional traffic with a
mix of short and long requests. The ingress short requests, to-
gether with the completion of egress traffic, blocks the ingress
long requests. This results in RNIC buffer accumulation and
triggers a large amount of PFC pause frames. The throughput
can only achieve 60 Gbps with 25% pause frame duration
ratio on average. With much effort from our appreciative ven-
dors, we finally fix this by configuring RNIC as a forced
relaxed ordering PCIe device.

Here is a simplified concrete trigger setting of Anomaly
#9: There are 8 connections of RC QP using RDMA WRITE
opcode for each direction. Each QP has 1 sending MR of
4MB and 1 receiving MR of 4MB. Each QP has a work queue
of length 128. The MTU is 4KB. The sender keeps sending 8
requests in a batch. Each request has 3 SG elements and the
pattern is [128B, 64KB, 1KB].

Root cause #4: RNIC packet processing bottleneck.
(New) Anomaly #10: Bidirectional RC Write with large

WQE batch size, a mixture of long messages and lots of short
messages, and a few connections causes PFC pause frames.

Collie finds that when several RC QPs keep posting multi-
ple short requests (e.g., 64B, 128B) in batch and a few long
requests for both directions, a large amount of pause dura-
tion is triggered. This RNIC of the RDMA subsystem has
already been configured as forced relaxed ordering PCIe de-
vice (Anomaly #8 is solved). Our vendors have confirmed this
anomaly and announce it fixed in their upcoming firmware
release. The lengthy discussion with our vendor shows us
the rough root cause: some component for packet processing
inside the RNIC is not fully bidirectional, and our bidirec-
tional reliable traffic (requires packet-level ACK) pattern with
a huge amount of short requests, trigger that component’s bot-
tleneck. This results in long requests blocked and then many
PFC pause frames are generated.

Here is a simplified concrete trigger setting of Anomaly
#10: There are 320 connections of RC QP using RDMA



WRITE opcode for each direction. Each QP has 1 sending
MR of 64KB and 1 receiving MR of 64KB. Each QP has
a work queue of length 128. The MTU is 1KB. The sender
keeps sending 64 requests in a batch. Each request has 1 SG
element and the pattern is [64KB, 128B, 128B, 128B].

Root cause #5: Host topology causes PCIe latency to
increase, and this bottlenecks RNIC receiving rate.

(New) Anomaly #11: On specific types of AMD servers,
Bidirectional cross-socket traffic causes pause frame storm
and drastic throughput drop.

Collie outputs the minimal feature set with only
source/destination NUMA set and bidirectional traffic, indicat-
ing these two are the dominant factors. With this bidirectional
(A to B and B to A) cross-socket NUMA setting (e.g., NUMA
0 from socket 0 for A and NUMA 2 from socket 1 for B,
where socket 0 is the affinitive node for RNIC), even mild
traffic with only a single connection can trigger up to 15.7%
pause frame duration ratio. After several conversations with
our RNIC and server vendors, we conjecture the root cause
lies in these particular servers’ cross-socket performance be-
cause we run the same traffic with the same NIC on different
servers but do not observe the same phenomenon. We consider
this anomaly as fixed because the vendor helps us roughly
understand the root cause and suggest we use 2x100 Gbps
NIC (each for a socket) to reduce cross-socket traffic, and we
follow this guidance.

Here is a simplified concrete trigger setting of Anomaly
#11: There is 1 connection of RC QP using RDMA WRITE
opcode for each direction. Each QP has 32 sending MR of
4MB and 32 receiving MR of 4MB. Each QP has a work
queue of length 128. The MTU is 4KB. The sender keeps
sending 16 requests in a batch. Each request has 1 SG element
with a fixed size of 256KB. The QP on host A is using the
memory of socket 0 and the QP on host B is using the memory
of socket 1.

(Old) Anomaly #12: GPU-direct RDMA causes pause
frame storm and drastic throughput drop on particular AMD
servers.

We observe a huge amount of pause frames and drastic
throughput drop only on some servers in our clusters. The
pause duration ratio can be up to 15% and throughput can
drop to less than 20% (i.e., 40 Gbps) in this scenario. After
careful debugging with our NIC vendor’s strong support, we
find out that there is a slight difference in PCIe bridge con-
figuration (PCIe ACSCtl) between the anomalous server and
normal ones. The anomalous configuration will forward GPU
traffic to the root complex rather than directly to the RNIC.
We fix this anomaly by adopting the correct configuration.

Here is a simplified concrete trigger setting of Anomaly
#12: There are 8 connections of RC QP using RDMA WRITE
opcode for each direction. Each QP has 1 sending MR of 4MB
and 1 receiving MR of 4MB. Each QP has a work queue of
length 128. The MTU is 4KB. The sender keeps sending 8
requests in a batch. Each request has 3 SG elements and the

pattern is [128B, 64KB, 1KB]. All MRs are allocated from
GPU memory and we use the GPU under the same PCIe
bridge (i.e., shown as PIX/PXB in nvidia-smi result).

Root cause #6: RDMA NIC has potential in-NIC in-
cast/congestion.

(Old) Anomaly #13: Co-existence of receiving traffic and
loopback traffic causes PFC pause frames.

This anomaly is found in our real applications and can also
be uncovered by Collie. Our machine learning system runs
workers and servers, and they use RDMA to accelerate the
communication. However, once a worker and a server are
scheduled on the same physical machine, there will be loop-
back traffic: the worker will send RDMA traffic to the server
on the same host. Meanwhile, the server is receiving traffic
from workers on other physical machines. The combination
of receiving and loopback traffic triggers congestion/incast
inside the NIC. And this RNIC lacks a mechanism to limit the
loopback traffic rate, which makes the problem worse. After
several discussions with our vendor, we bypass this anomaly
by identifying the loopback communication and using other
IPC mechanisms (e.g., shared memory). We do not consider
this anomaly fixed because we cannot fully rely on other IPC
mechanisms, especially for the virtualization environment.
This anomaly exposes that a proper design of RNIC needs to
consider NIC incast and we are glad to see that some latest
RNIC have done so.

Here is a simplified concrete trigger setting of Anomaly
#13: There are 16 connections of RC QP using RDMA
WRITE opcode. 16 receivers are 8 senders are on the same
host A and the other 8 senders are on the host B. Each QP has
32 sending MR of 4MB and 32 receiving MR of 4MB. Each
QP has a work queue of length 128. The MTU is 4KB. The
sender keeps sending 16 requests in a batch. Each request has
1 SG element with a fixed size of 256KB.

A.2 Subsystem H with Broadcom 100 Gbps P2100G

(New) Anomaly #14: Bidirectional RC traffic with lots of
connections and the large MTU causes reduced throughput
without PFC pause frame.

Collie observes that a large MTU is necessary to trigger this
anomaly. Once we switch the MTU from 4096 (for RDMA)
to 1024, both directions can achieve the line rate. This is un-
usual because most cases show that large MTU improves the
performance and small MTU triggers performance anomalies.
We don’t observe the same phenomenon on any other type of
RNICs.

Here is a simplified concrete trigger setting of Anomaly
#14: There are 1024 connections of RC QP using RDMA
WRITE opcode for each direction. Each QP has 81 sending
MR of 256KB and 83 receiving MR of 256KB. Each QP has
a work queue of length 128. The MTU is 4KB. The sender
keeps sending 1 request in a batch. Each request has 4 SG
element with a fixed size of 64KB.

(New) Anomaly #15: UD with long WQ and lots of connec-



tions causes PFC pause frames.
This anomaly is similar to the Mellanox anomaly #1 but has

a slightly different trigger. Collie successfully trigger #1 with
only a single connection, but for P2100 RNIC our multiple
runs show that a few connections are necessary.

Here is a simplified concrete trigger setting of Anomaly
#15: There are 32 connections of UD QP using SEND/RECV
opcode. Each QP has 1 sending MR of 4KB and 1 receiving
MR of 4KB. Each QP has a work queue of length 64. The
MTU is 2KB. The sender keeps sending 1 request in a batch.
Each request has 1 SG element. The message pattern is like
[256B, 1KB, 64B, 1KB].

(New) Anomaly #16: RC READ with lots of connections,
large WQE batch size, and small MTU causes PFC pause
frames.

This anomaly is similar to the Mellanox anomaly #4 and
it shows that for the same RNIC and other hardware compo-
nents, the best MTU choice can be different when workloads
change.

Here is a simplified concrete trigger setting of Anomaly
#16: There are 500 connections of RC QP using RDMA
READ opcode. Each QP has 1 sending MR of 256KB and 1
receiving MR of 256KB. Each QP has a work queue of length
128. The MTU is 1KB. The sender keeps sending 8 requests
in a batch. Each request has 1 SG element with a fixed size of
64KB.

(New) Anomaly #17: RC SEND with lots of connections,
small WQE batch size, small MTU, short messages, and long
WQ causes PFC pause frames.

We have reported this anomaly to our vendor. To the best
of our knowledge, we conjecture this anomaly is related to
some corresponding WQE cache component inside RNIC.

Here is a simplified concrete trigger setting of Anomaly
#17: There are 80 connections of RC QP using SEND/RECV
opcode. Each QP has 1 sending MR of 1MB and 1 receiving
MR of 1MB. Each QP has a work queue of length 128. The
MTU is 1KB. The sender keeps sending 1 request per batch.
Each request has 1 SG element of fixed size 1KB.

(New) Anomaly #18: Bidirectional RC WRITE with a few
connections, large WQE batch, and small messages causes
PFC pause frames.

Our vendor has confirmed anomalies #17 and #18. They
have reproduced these two anomalies and help us fix them.
The solution is to configure some specific registers of the
RNIC, and these two anomalies disappear.

Here is a simplified concrete trigger setting of Anomaly
#18: There are 16 connections of RC QP using RDMA
WRITE for each direction. Each QP has 1 sending MR of
12KB and 1 receiving MR of 12KB. Each QP has a work
queue of length 64. The MTU is 1KB. The sender keeps send-
ing 16 requests in a batch. Each request has 1 SG element of
fixed size 64KB.


	Introduction
	Background
	RDMA Subsystem Performance Anomalies
	Existing Approaches

	Overview
	Search Space and Workload Engine
	Search for Performance Anomalies
	Workloads Generation
	Anomaly Monitor

	Implementation
	Evaluation and Experience
	Performance Anomalies Found
	Running Time for Anomaly Search
	Using Collie for Application Design
	Implications of the Performance Anomalies Found

	Discussion and Future Work
	Related Work
	Conclusion
	Performance Anomalies Found
	Subsystem F with Mellanox 200Gbps CX-6 VPI
	Subsystem H with Broadcom 100Gbps P2100G


