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Abstract

As the parameter size of large language models (LLMs) continues
to expand, the need for a large memory footprint and high com-
munication bandwidth have become significant bottlenecks for
the training and inference of LLMs. To mitigate these bottlenecks,
various tensor compression techniques have been proposed to re-
duce the data size, thereby alleviating memory requirements and
communication pressure.

Our research found that video codecs, despite being originally
designed for compressing videos, show excellent efficiency when
compressing various types of tensors. We demonstrate that video
codecs can be versatile and general-purpose tensor codecs while
achieving the state-of-the-art compression efficiency in various
tasks. We further make use of the hardware video encoding and de-
coding module available on GPUs to create a framework capable of
both inference and training with video codecs repurposed as tensor
codecs. Building on insights gained from video codecs, we further
show that the hardware of the video codecs can be customized
and enhanced to significantly improve tensor encoding/decoding
throughput without incurring substantial costs, making it a highly
effective solution for large-scale model deployment without requir-
ing significant modifications to the existing GPU architecture.
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1 Introduction

Recently, Large language models (LLMs) have achieved significant
success, showcasing remarkable proficiency in various applications,
such as virtual assistants [60], chatbots [60], and automated cus-
tomer service platforms [63].

DP | DP GPT-Q/AWQ:
Rank 0] | Rank] O
GPUO Weight [ GPU1
Weight Gragient Weight QuaRot:
Stageq | Gradient || 1 Gradient Weight
KV Cache n KV Cache S
1 | 1
Ot Simies R O St | Ibit Adam,
- [ — 1bit LAMB:
. | AN el
————— e e e i et ety | Grad. |
Act.Grad, | N0 AcGrd | Semed
GPU2 ! GPU3 LLM.265:
. 1. .
op Weight GVVegjghtt Weight Weight
! g  [Graglient| ! i 1
Stage 1| | Gradient gl Gradient KVS
KV Cache | <\:"./l KV Cache | | Grad.
RORIEESR | | | MORAREER {Act |
O ) (U

Figure 1: LLM.265: General-Purpose and Versatile Tensor
Compression for LLM Training and Inference.

As their parameter size grows, LLMs develop emergent abili-
ties [83]. These abilities enable them to carry out more advanced


https://orcid.org/0000-0002-2668-6456
https://orcid.org/0009-0000-6297-1599
https://orcid.org/0000-0003-0335-5512
https://orcid.org/0009-0009-9166-6476
https://orcid.org/0000-0003-1034-2736
https://orcid.org/0000-0002-0611-3941
https://orcid.org/0000-0002-3574-3440
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756078
https://doi.org/10.1145/3725843.3756078
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3725843.3756078&domain=pdf&date_stamp=2025-10-17

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

and complex tasks such as code generation [49, 68], mathematical
problem-solving [70], and theorem proving [65], even some they
weren’t explicitly trained for. This growing range of applications
has motivated researchers to train increasingly larger models, such
as GPT4 [60], Nemotron-4-340B [32], and LLaMA-3-70B [1], which
further leads to a revolution in the development and deployment
of Al systems and hardware.

The training and inference of these large language models with
large parameter sizes often strain the underlying computing in-
frastructure, posing challenges in terms of memory capacity and
communication bandwidth. For example, inferencing a DeepSeek-
V3-671B [17] model requires at least 671GB memory for storing
the parameters only, far exceeding the capacity of a single GPU.
To address this problem, parallelism strategies such as pipeline
parallelism (PP) [30, 31] and data parallelism (DP) [11, 16] have
been developed to distribute models across multiple GPUs and in-
crease throughput for inference and training. Figure 1(a) shows an
example of a distributed LLM using pipeline parallelism and data
parallelism. However, inter-GPU communication is required for
such distributed models. As shown in Figure 1(a), activations must
be transmitted between pipeline stages for distributed inference.
During training, communication pressure is even higher because
in addition to activations, both weight gradients and activation
gradients must be transmitted across GPUs.

While scaling up systems and hardware for LLM workloads
remains challenging, optimizing data movement and storage be-
comes an overarching goal, of which compression has become
a crucial strategy. Compression trades more computation for a
reduced amount of data to be maintained, which subsequently
translates to a reduced memory footprint and reduced pressure on
the communication system. Figure 1(b) lists the tensors required
for inference and training of LLMs. Traditionally, these tensors
are stored, inferred, and trained in half-precision float (FP16) or
Brain-float (BF16) [37] formats, with each value occupying two
bytes. Research has shown that with compression, model weights
can be reduced to 3-4 bits [25, 42] and gradients to 3 bits [41, 77]
without significant accuracy degradation. However, existing ten-
sor compression techniques also face specific challenges: they are
not general-purpose [25, 41, 42, 77] and lack versatility. As illus-
trated in Figure 1(b), a variety of tensors, such as model weights,
gradients, and activations, need to be maintained. None of the ex-
isting approaches is general-purpose, typically requiring different
compression algorithms for each tensor type. In addition, some
approaches [25, 41, 42, 77, 85] are not versatile due to their reliance
on data-aware calibrations and warm-up periods. This dependence
complicates deployment and limits robustness when calibration
data is unknown or biased. Moreover, existing algorithms typically
compress values into short integers, restricting each compressed
value to using an integer number of bits, which makes achieving
a fractional bitrate (defined as the average number of bits in the
compressed form per value in the uncompressed form) impossible,
further limiting their versatility.

Our insight is that video codecs (consisting of both an encoder
and a decoder), despite being designed for video compression, work
well and even achieve state-of-the-art information efficiency for
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various tensor compression tasks. Specifically, we found the distri-
bution of the values representing pixels in videos shares charac-
teristics with tensors in LLMs, allowing video codecs to compress
tensors efficiently with only minimal adjustment of codec param-
eters. Modern GPUs are equipped with on-chip video encoding
and decoding engines (e.g., NVENC/NVDEC on Nvidia GPUs [59]),
which are typically idle during LLM workloads. This provides an
opportunity to directly leverage these unused resources for optimal
tensor compression throughput, essentially allowing us to utilize
them at no additional cost. We refer to our method of using video
codecs for tensor compression as LLM.265. LLM.265 is general-
purpose: it offers a unified compression method that effectively
compresses various types of tensors while achieving state-of-the-
art information efficiency across all tasks. LLM.265 is also versatile:
being data-independent, LLM.265 requires no data-aware calibra-
tion or warm-up. In addition, LLM.265 works at fractional bitrates
(e.g. 2.3 bits per value), not limited to integer bitrates. Thanks to
these properties, LLM.265 allows for extreme LLM compression
by simultaneously compressing multiple types of tensors, while
providing the capability of fine-grained fractional bitrate tuning
for ultimate information efficiency. The reduced memory footprint
and communication bandwidth requirement enable the training
and inference of large models on commodity-level GPUs with lim-
ited resources. We demonstrate that LLM.265 is the first method
capable of conducting inference for the LLaMa-3-70B [1] model
with a sequence length of 128k on 4 X 8GB devices, using 3.5 bits
per value for communication and 2.9 bits per value for weight and
key-value (KV) cache compression. In contrast, previous methods
only compress weight and KV cache to 4 bits at most and do not
consider activation compression for communication.

In this paper, we will first provide empirical evidence demon-
strating the effectiveness of video codecs in tensor compression.
Our experiments then showcase how LLM.265 can compress the
weights, KV cache, and activations of LLMs, thereby reducing the
memory footprint and communication cost during inference. To
highlight the general-purpose capability of LLM.265, we further
show its efficacy in compressing gradients to reduce communication
size during distributed training under pipeline and data parallelism.
Finally, we will discuss the insights LLM.265 offers for future GPU
and accelerator hardware design, exploring the potential for devel-
oping custom hardware codecs specifically tailored for tensors. We
make the following contributions:

(1) We demonstrate that video codecs such as H.264 and H.265
are highly effective for compressing various types of tensors,
including weights, activations, and gradients.

(2) We present empirical evidence demonstrating the effective-
ness of video codecs for tensor compression, providing valu-
able insights to guide the development of future tensor com-
pression algorithms.

(3) We develop LLM.265 that leverages the hardware video codecs
in modern GPUs to compress tensors during LLM inference
and training. It achieves compression ratios of up to 3-20x
while delivering superior throughput compared to state-of-
the-art compression methods.
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(4) We further show that video codecs can be augmented into
more efficient tensor codecs specialized for tensor compres-
sion with only a marginal increase in cost, reducing die
area and power consumption. We propose the integration of
tensor-specialized codecs into future GPU and accelerator
designs.

Our implementation is publicly available at https://github.com/
Entropy-xcy/llm.265.

2 Background
2.1 Model Compression

Quantization techniques have been widely applied in model com-
pression [7, 29, 36, 55]. Most current quantization methods are based
on vanilla round-to-nearest quantization (RTN). Given a tensor T,
the RTN quantization function is defined as: Q(w) = A-Round (‘K’V ),

A= %, where N is the number of quantization bits, and A

is the quantization scaler determined by the absolute maximum
value. Additionally, recent work has also explored non-uniform
quantization techniques such as K-means clustering [39], vector
quantization [80], and NormalFloat quantization [20]. While our
work primarily focuses on dense compression methods, several
other studies have explored sparse model compression for both
training and inference [72, 75, 89]. These methods are orthogonal
to our methods. We leave the discussion and comparison of these
work for future research.

Weight Compression: In LLM inference, the size of model
weights can be a bottleneck. Modern LLMs can scale up to over 600
billion parameters [17], requiring a total of more than one terabyte
of GPU memory to store both the model weights and the KV-cache.
This would involve distributing the model across 16 to 32 Nvidia
GPUs [17], each with 80GB of memory, which would incur signif-
icant costs and create considerable communication overhead. To
address this issue, LLMs are usually compressed with quantization-
aware training (QAT) methods [20, 47, 86] or post-training quan-
tization (PTQ) techniques [10, 25, 42, 80] to reduce their memory
footprints such that they could be served with less number of GPUs.
QAT approaches require additional training, while PTQ algorithms
calibrate the rounding of weights into low-bit integers by running
the model through a calibration dataset. Through this calibration
process, weights can be compressed from 16 bits to 3-4 bits, while
still maintaining acceptable model accuracy.

Activation Compression: Simply compressing the model
weights is not sufficient. During inference, especially in scenar-
ios involving long-context lengths and large batch sizes, the size
of the activations (including KV cache) also becomes a bottle-
neck. Dual-side quantization and compression techniques, such
as SmoothQuant [85] and QServe [44], have been developed to
compress both model weights and activations. Activation compres-
sion presents a greater challenge due to the significant outliers that
exist in the activation’s distribution [85]. As a result, current acti-
vation compression algorithms typically achieve 8-bit compression
without accuracy loss [44]. Some methods reach 4-bit compres-
sion [4, 48], but often with degraded accuracy. These approaches
primarily focus on compressing the activations before matrix multi-
plication in linear layers, thereby accelerating the GEMM Kernel on
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modern GPUs. However, none of them explore compressing activa-
tions transmitted between machines to reduce the communication
cost, which is much more time-consuming in distributed settings. In
our work, we consider compressing the KV cache during inference,
as well as the activations between different pipeline parallelism
stages in both training and inference.

Gradient Compression: Model compression in training be-
comes more complex during backward propagation stages, where
maintaining gradients is a major bottleneck for memory and com-
munication. In distributed training, gradients need to be exchanged
across machines, often causing communication bottlenecks. 1-bit
Adam [77] and 1-bit LAMB [41] compress the weight gradient to
an average of 3-4 bits using a two-stage approach. In the warm-up
stage, 16-bit floating point values are transmitted without compres-
sion, as the model hasn’t converged to a point where the weights
can be easily compressed yet. Once the model convergence be-
comes stable, these algorithms enter a variance-freeze stage, where
they can compress the weight gradients to 1 bit per value. Notably,
these methods only support weight gradient compression while
not supporting activation gradient compression, limiting their use
case to data parallelism but not pipeline parallelism as pipeline
parallelism requires communication of activation gradients. In our
work, we apply our method to compress both weight gradients in
data parallelism and activation gradients in pipeline parallelism.

Problems of Existing Approaches: We have identified two
main issues of existing approaches. First, existing tensor compres-
sion algorithms are not general-purpose, with each algorithm only
capable of compressing one or two types of tensors. This makes it
complex to create a "compress-everything" system, and the quality
of the results when using these algorithms in conjunction is unver-
ified. Second, all these algorithms require specific data-dependent
calibrations and parameter tuning, making the system design more
complex and raising concerns about their robustness across differ-
ent models and varying data distributions.

2.2 AVC and HEVC Video Codecs

Modern encoding techniques such as Advanced Video Coding [34]
(AVC or H.264) and High-Efficiency Video Coding [35] (HEVC or
H.265) enable efficient video streaming over limited network band-
width by compressing raw video footages up to a ratio of 1000:1
with unnoticeable quality loss of the videos. A video codec consists
of an encoder that compresses raw videos to compressed bitstreams
and a decoder that reconstructs every pixel from the bitstreams.
The H.264 and H.265 standards establish a set of fixed rules for the
decoding process while allowing flexibility in implementing the
encoding process. The encoding pipeline is a compounding of sev-
eral unique compression blocks. Figure 2 (a) shows a typical H.265
encoding pipeline implementation. The encoding process begins
with raw video frames. First, a process called the CTU (code tree
unit) partitioning divides the video into a Quad-Tree of Coding
Units (CUs) [73]. Next, the encoder exploits spatial and temporal
correlations through ®intra-frame prediction and @ ®inter-frame
prediction within each CU, allowing redundant pixel information to
be eliminated when pixels can be accurately predicted from neigh-
boring pixels or reference frames. The residual between the actual
pixels and the prediction is measured, transformed, quantized, and
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Figure 2: Why does the Video Codec Work for LLM? (a) illustrates the pipeline of the H.265 video encoder. In (b), we incrementally
activate the stages in the H.265 video encoding pipeline to demonstrate how each step contributes to the compression process.
We constrain the quality of the compression/decompression process to have a maximum mean square error of 0.01.

stored as coefficients. This step is called the @DCT transform. Fi-
nally, all the predictive states, coefficients, and meta-data are input
into an ®entropy coder (e.g., CABAC [51]) to exploit system-level
symbol redundancies.

3 Video Codecs are secretly Tensor Codecs
3.1 Why do Video Codecs Work for Tensor?

Video codecs achieve high-quality and efficient compression by
leveraging prediction. The idea is that the majority of pixels
can be predicted, leaving only sparse and small residuals to
be encoded. In addition to the prediction, steps such as Discrete-
Cosine Transform (DCT), quantization, and entropy coding exploit
other types of redundancies in the video that are either impercep-
tible to the human eye or can be masked due to the non-uniform
distribution of symbols.

Our work demonstrates that some stages in the video coding
pipeline are also effective for compressing tensors. To analyze why
video codecs work and how each stage in the pipeline contributes
to the compression of large language model tensors, we set up an
experiment where we enabled the stages in the encoding pipeline
step-by-step, as shown in Figure 2 (b) steps (1) to (6). In our ex-
periment, we used the weight tensor of the Key-Projection linear
layer in the LLaMA-2-7B [78] network as an example to test if video
codec works for compressing tensors. ! Video codecs like H.264
and H.265 allow users to set the bitrate target explicitly. We con-
strained the maximum distortion to a mean square error (MSE) of
less than 0.01. Detailed analysis of how the bitrate of the codec and
the distortion of the weight will affect the LLM’s accuracy will be
shown in §4. We sweep the bitrate from low to high for each codec
pipeline setting until we find a bitrate that achieves this quality

'We constructed a 4D video tensor from the 2D weights of the Key-Projection linear
layer, using the layer index as the temporal channel and only the Luma channel for
gray-scale encoding, with Chroma channels padded with zeros.
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mapping them to all values within the block. The transition
from (a) to (b) demonstrates how DCT removes outliers from
a normal distribution containing outliers. (c) to (d) gives an
example of an outlier with a value of 128 being mitigated.

constraint. We demonstrated that incrementally activating stages
in this pipeline reduced the average bits per value from 8 bits to 2.6
bits for achieving a quality of MSE < 0.01.

Entropy Coding: Entropy coding is a lossless compression tech-
nique used in various compression algorithms. It assigns shorter
codes to more frequent symbols and longer codes to less frequent
symbols. In the context of video codecs, entropy coding can exploit
redundancies in the distribution of symbols, reducing data size
without introducing additional distortion due to its lossless nature.
The effectiveness of entropy coding in compressing videos can be
generalized to compressing tensors. As prior works have shown,
weights, activations, and gradients in LLM training and inference
all conform to a normal or bell-shaped distribution [20, 42, 45]. The
non-uniformity in symbol distribution allows entropy coding to
achieve an average reduction of 0.4 bits per value for the weight
tensor, as illustrated in Figure 2 (b) step (2).

Transform Coding: Transform coding is a vital technique used
in video and image codecs. It automatically de-correlates pixels in
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Figure 4: An example of a block of LLaMA-2-7B [78] weights
going through the H.265 pipeline. The intra-prediction step
generates a rough prediction of the entire block, making the
residuals easy to code with the DCT transform.

the frame and removes high-frequency information that is less
perceptible to human eyes. One popular technique in transform
coding is the DCT transform [38], which is utilized in both H.265
and H.264. The DCT transform is based on that for an orthogonal
basis matrix B and input X, the encoding process can be represented
as Y = XB, and the encoded Y can be decoded by X = YB~1.

In tensor compression, however, if we view tensors as images, the
emphasis on low-frequency signals through DCT transform may
visually preserve similarity, but this does not translate to improved
compression quality in terms of the accuracy of model-specific
tasks (e.g., the quality of the generated sentences). Instead, trans-
form coding is effective in tensor compression for a different reason
— it mitigates the encoding difficulties caused by outliers in ten-
sors [3, 4]. Outliers that are far away from the center distribution,
sometimes even degrees of magnitude different from centered val-
ues, put conventional quantization and compression techniques in
a dilemma that could either encode the outliers but leave the center
distribution’s encoding in low resolution or clip the outliers to bet-
ter adapt to the range of the center distribution, but not both. Prior
works [19, 85] showed that suppressing the outliers or decreasing
the center quantization granularity both decreases the accuracy of
LLMs.

However, transform coding solves this dilemma. In Figure 3, we
show the effect of the DCT transform: (a) exemplifies a common ten-
sor distribution where the central distribution is near-normal, but
outliers exist at both tails. The DCT transform solves the challenge
of encoding outliers; its output, as seen in (b), no longer contains
outliers. A more concrete example is shown in the process from
(c) to (d), where we can see that the value of 128 is an outlier in
(c). The DCT transform addresses this by amortizing the difficulty
of encoding the outlier value 128 to other values within the same
block. This results in a matrix (d) containing no outliers and is much
easier to encode in binary space.

Intra-Frame Prediction: Intra-frame prediction is another
crucial component in modern video codecs. It is based on the simple
fact that objects in the frames can be predicted or approximated
through a few classes of patterns. For example, smooth areas of the
frame can often be approximated by predicting the pixel values from
neighboring pixels using a planar or DC (direct current) prediction
mode. Edge areas, which are common in real-world images, can be
predicted using directional modes that capture the orientation of
edges. Although it is usually impossible to predict the pixels in a
block with very high accuracy, residual encoding can be used to
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improve the quality further. As long as the prediction is close to the
original block, the residuals will be small in size and much easier
to encode compared to the raw values.

To our surprise, the intra-frame prediction works well for com-
pressing tensors. We present an example in Figure 4. In (a), a block
of a weight tensor is depicted as an image. We then performed
H.265 encoding on this image as a frame, extracting the predic-
tion from the intra-frame predictor of H.265 using the HEVC Test
Model (HM) [33]. The predicted image is shown in (b), and the
residual, which is the difference between the original block and
the prediction, is shown in (c). We made three observations for
applying intra-frame prediction for weight images. First, the orig-
inal weight, when viewed as images, contains edges and planar
blocks that are similar to real-world images due to the channel-
wise distribution property, as shown in prior works [4, 42, 85]. The
channel-wise distribution property means each value’s distribution
aligns with the corresponding channel, causing values close to each
other to appear within the same channel, which visually looks like
the edges of objects. Second, the intra-frame prediction mechanism
can detect the channel-wise distributions and efficiently encode
them using small-sized prediction states. Third, the residuals after
the intra-frame prediction are much smaller in size compared to
the original weight distribution and require much fewer states to
properly encode. This, when used in conjunction with Transform
coding and quantization as shown in Figure 4 (d), results in sparse
and small coeflicients that are very easy and efficient to encode
using only a few bits.

Inter-Frame Motion Prediction Does not Work. While the
Inter-Frame prediction, including the motion prediction, achieves
great efficiency in compressing videos, based on our experiments,
it does not work for compressing tensors. As shown in Figure 2 (b)
(5) = (6), enabling the inter-frame prediction stage does not help
reduce the number of bits per value but rather increases it. This
observation suggests there is little inter-frame pixel correlation and
little inter-layer correlation of weights in LLMs.

3.2 LLM.265 Implementation

We implement LLM.265 on top of the PyTorch [2] framework. Mod-
ern GPUs contain specialized hardware codecs designed to encode
and decode videos. LLM.265 utilizes NVENC and NVDEC, which
are the hardware video encoders and decoders present on Nvidia
GPUs [59]. As NVENC and NVDEC have a maximum limit on the
height and width of a frame, we first partition each input tensor
into multiple chunks, each corresponding to a frame. Since video
codecs take 8-bit integers as input, the FP16 values in the tensor
need to be first rounded to 8 bits using quantization before feeding
to HEVC codec [4, 10], with only the Luma channel of the codec
used. As mentioned in Figure 3.1, inter-frame compression is inef-
fective; therefore, LLM.265 enforces an intra-frame-only encoding
by setting codec parameters.

Although LLM.265 takes advantage of the hardware encoders
and decoders of Nvidia’s GPUs, LLM.265 is still bottlenecked by the
limited throughput of them. This is because high performance is
not the key design goal of existing hardware codecs. Since people
typically watch videos at resolutions lower than 4K, and at a fram-
erate lower than 60 frames per second, the hardware codecs lack
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the incentive to support higher throughput. In §4 and §5, we first
present how LLM.265 can be applied to inference and training to
compress activations, weights and gradients. In §6, we analyze the
performance of NVENC and NVDEC, followed by why and how we
should build tensor-specialized codecs to further speed up training
and inference.

4 Memory- and Communication-Efficient
Inference Using LLM.265

In this section, we introduce LLM.265 as the first data-independent
method for low-bit (i.e., < 3 bits for weights) LLM compression.
LLM.265 is versatile and accurate, and it is outlier-free, calibration-
free, and training-free. Data-independent means that LLM.265 does
not require any extra data to fine-tune or calibrate the model for bet-
ter accuracy, making the accuracy of LLM.265 independent from the
quality of the chosen dataset. Moreover, it eliminates the compute-
expensive calibration and fine-tuning steps. Outlier-free means that
LLM.265, unlike existing works such as LLM.Int8() [19], does not
require maintaining hard-to-encode outliers as separate sparse ma-
trices. This avoids the slow random memory access patterns as-
sociated with those outliers and simplifies the system design, as
LLM.265 operates entirely on continuous memory chunks.

Compared to existing quantization techniques, these features
offer LLM.265 significant improvements in both efficiency and ro-
bustness. Building upon the LLM.265 implementation described in
§3, we aim to improve the memory and communication efficiency in
LLM inference. Our goal is to run a LLaMA-3-70B [1] model with a
128k context length on four edge devices with only 8GB of memory.
Achieving this challenging objective requires a general-purpose
compression strategy that includes three critical steps:

Weight Compression. In §4.1, we show that LLM.265 can re-
duce the memory footprint of model weight by 5.5x while maintain-
ing accuracy. Our weight compression enables us to run a LLaMA-
3-70B model with only about 25GB of memory.

KV Cache Compression. In §4.2, we employ LLM.265 to com-
press the KV cache to 2.9 bits without degrading accuracy. This
reduces the cache size for a 128k length context from 40GB to 7.2GB
for the LLaMA-3-70B model.

Communication Compression. In §4.2, we distribute the model
across four devices using pipeline parallelism and compress the ac-
tivations between different stages using LLM.265. By reducing the
bit-width to 3.5 bits, our method can speed up the communication
by 4.5 times.

4.1 Weight Compression

For low-bit weight quantization methods, quantization-aware train-
ing (QAT) [47, 86] is computationally expensive due to the high
training cost. Conversely, post-training quantization (PTQ) [25,
42] is more efficient but heavily depends on the calibration set,
which can limit its generalization ability across diverse models and
tasks [62]. As a result, neither QAT nor PTQ can be considered
truly zero-shot methods since they involve a "fine-tuning" step,
raising concerns about their efficiency and robustness in real-world
applications.
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Figure 5: The trade-off between accuracy and average bid-
width of different methods for compressing the LLaMA-2-
7B model [78] on eight commonsense reasoning tasks. The
red-dashed-line represents the BF16 uncompressed model
accuracy.

As described in §3.2, NVENC only supports 8-bit integers as
input, while the weights are stored in FP16 or BF16 precision. There-
fore, we first quantize the input to 8 bits. In the second stage, we use
video codecs to further compress the output from the first stage to a
low bit-width (2-3 bits on average). A unique feature of LLM.265 is
variable and fractional bit-width compression: by adjusting the
video codec’s parameters, we can control the compression budget,
allowing the matrices to be compressed into fractional and variable
bit-widths per element. This approach enhances both versatility
and accuracy. Rather than quantizing the model to a fixed integer
bit-width, we perform a fine-grained search? to maintain different
compression ratios for different weight matrices.

We conducted experiments on the LLaMA-2-7B [78] and LLaMA-
3-70B [1] models. Compared to SOTA quantization methods re-
quiring calibration, LLM.265 achieves on-par accuracy with higher
compression ratios.

Experimental Setup. Our evaluation of the proposed LLM.265
was carried out on eight zero-shot commonsense reasoning tasks

%In fixed-bit-width mode, the user specifies an average bit-width, and this budget is
uniformly applied to all tensors. In variable-bit-width mode, the budget for each layer
is defined as B = k - [ + b, where [ is the layer index, k is a scalar we search for, and b
is chosen so that the overall average bit-width matches the user-specified budget.
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Table 1: Accuracy and average bits of LLaMA-3-70B [1] after
compression using different algorithms evaluated on PIQA,
WinoGrande (W.G.) and HellaSwag (H.S.) datasets. "128G"
denotes quantizing each group of 128 values separately.

# Avg. Bits Algorithm PIQA | WG. HS.

16 - 82.4 | 80.6 66.4
GPTQ-128G 80.6 | 77.1  63.5

3:25 AWQ-128G 81.4 | 78.6 63.5
3.00 GPTQ 79.5 | 66.1 62.8
' AWQ 80.1 67.6  62.5

2.88 LLM.265 (Ours) 815 | 77.5 63.7

using the LM Evaluation Harness [27]. These tasks include PIQA [9],
COPA [66], ARC-easy and ARC-challenge [13], WinoGrande [69],
HellaSwag [87], RTE [81], and OpenbookQA [53]. For baselines, we
compared LLM.265 with two state-of-the-art quantization methods:
GPTQ [25] and AWQ [42]. As these baselines were calibrated using
a few samples from WikiText-2 [52], we excluded the measurement
on the calibration dataset from our experiments.

LLaMA-2-7B. In Figure 5, we compare LLM.265 and its fixed
bitrate variant against other baselines. Our method significantly
outperforms all baselines, maintaining full precision accuracy with
approximately 3 bits. In contrast, GPTQ and AWQ achieve similar
accuracy with around 4.25 bits. Additionally, these baselines strug-
gle to keep accuracy under 3 bits, while LLM.265 generalize well to
2.5 bits. Another observation is that LLM.265 outperforms its fixed
bitrate variant by a large margin in the extremely low bit-width
regime (i.e., < 3 bits). This validates that different components in
LLMs vary in their compression difficulty, and setting different bit
widths can further push the limitations of compression.

LLaMA-3-70B. To verify the scalability of our method, we
present the results of the compressed LLaMA-3-70B model on three
datasets in Table 1. Our method achieves similar accuracy to GPTQ-
128G and AWQ-128G with 0.37 fewer bits, and outperforms the
3-bit baselines without groupwise quantization with a large mar-
gin. Here, LLM.265 benefits from its fine-grained bit-width feature,
reducing the bit-width to as low as 2.88 bits. In contrast, prior
methods are limited to integer bit-widths with separate groups for
quantization, making them less flexible.

4.1.1  Selection of Codecs. We also investigate how compressing us-
ing different video codecs affect model accuracy. Each Nvidia GPU
generation supports a distinct set of codecs, summarized in Table 2.
We exclude VP9 [54] from our evaluation because it supports only
hardware decoding, whereas our method requires hardware sup-
port for both encoding and decoding. We evaluate model accuracy
under the remaining codecs; Figure 6 shows the average normalized
accuracy across all tasks. For practical storage budgets (> 1.8 bits
per element) the curves for H.264, H.265, and AV1 overlap, with
variations within the noise. Consequently, we adopt H.265 for GPU
experiments, as it is the most widely available across GPU gener-
ations, supports the highest resolutions, and delivers the greatest
throughput.
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Figure 6: Comparison of the tensor compression information
efficiency of the three most popular video codecs: H.264,
H.265,and AV1. At areasonable storage budget, the difference
in information efficiency between all three codecs is so small
that can be attributed to noise.

GPU Gen. H.264 H.265 AV1 VP9
Ada Lovelace | 4K Enc/Dec. | 8K Enc/Dec. | 8K Enc/Dec. | 8K Dec
Ampere 4K Enc/Dec. | 8K Enc/Dec. - 8K Dec
Volta 4K Enc/Dec. | 8K Enc/Dec. - 8K Dec

Table 2: GPU Support for Different Video Codecs [14]

4.1.2  Applying LLM.265 on a Variety of Models and Tasks Other than
LLM. We apply LLM.265 to a diverse set of downstream tasks; the
results are presented in Figure 7. LLM.265 consistently surpasses
standard quantization baselines and AWQ [42] across all tasks and
model families, underscoring its strong generalizability.

4.2 KV Cache and Communication
Compression

While our weight compression results show the ability of serving a
70B model on a single commodity-level GPU, it still suffers from
two limitations described below.

Long-context scenarios: The large memory requirements of
KV cache poses challenges [21, 74, 89] for long-context LLMs. For
example, storing a 128k KV cache using FP16 requires 40 GB of
GPU memory for the LLaMA-3-70B model, which is larger than the
compressed model itself.

On-device Inference: It is infeasible to run inference for a 70B
model on an edge device with only 8 GB memory. We address
these challenges by applying LLM.265 to KV cache and commu-
nication compression, enabling distributed inference for LLMs in
long-context, on-device scenarios.

Here, we detailed our final results that reduce the memory foot-
print by 5.5x and communication volumes by 4.5X for the LLaMA-
3-70B model using LLM.265, which only lead to a minor accuracy
drop (< 2%) in the zero-shot reasoning task.

Building on our compressed LLaMA-3-70B model in §4.1, we
further compress the KV cache to 2.9 bits and the activations be-
tween different pipeline parallelism stages to 3.5 bits. For baseline
comparisons, we employ RTN quantization, SpinQuant [48] and
QuaRot [4] to directly reduce the KV cache and activations to 3
bits and 4 bits, respectively, using asymmetric min-max dynamic
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Figure 7: Evaluation of applying LLM.265 for model com-
pression on four additional tasks: (a) Twitter Sentiment
Analysis [50] using the T5 [58] model. (b) Quora Embed-
ding/Retrieval [15] using T5 [58] model. (c) Visual Question
Answering [46] using Qwen-2.5-VL-3B-Instruct model [6]. (d)
ImageNet classification [18] using Vision Transformer (ViT)
model [22].
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Figure 8: The comparison between RTN quantization, Spin-
Quant [48], QuaRot [4] and LLM.265 for compressing KV
cache and activations of LLaMA-3-70B. "KV3" means com-
pressing the KV cache to 3 bits (2.9 bits for LLM.265), while
"A4" compresses activations to 4 bits (3.5 bits for LLM.265).
Lower perplexity and higher accuracy indicate better com-
pression quality.

quantization. Our evaluation includes measuring the perplexity
score on the WikiText-2 test set and the zero-shot accuracy on the
PIQA dataset. The perplexity score measures an LLM’s fluency and
coherence by quantifying its uncertainty in token prediction.

As shown in Figure 83, our method results in only a 7% increase
(from 7.28 to 7.77) in perplexity score on WikiText-2 and a 1% drop
(from 81.5% to 80.7%) in accuracy on PIQA while compressing the
KV by 5.5 times and the activations by 4.5 times. Consequently,

3Baseline accuracy results obtained from [76]
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when the model is distributed across four devices using pipeline
parallelism, only about 6.3 GB of memory is required for the com-
pressed model and 1.8 GB for the stored KV cache. This amounts
to approximately 8 GB of memory per device. Compared to our
baselines, we observe that directly quantizing the KV cache to 3
bits leads to a significant accuracy drop, nearly destroying the orig-
inal model’s ability. For activation-only compression, our method
achieves only a 5% increase in perplexity score while RTN quanti-
zation results in a 13% increase. These results show that LLM.265
consistently achieves higher accuracy than the baselines while
using the same or less storage budget.

5 Communication-Efficient Distributed
Training Using LLM.265

In this section, we shift to the distributed training setting, with
the aim to reduce the communication costs, which account for 30%
to 95% of the total training costs of modern LLMs [77, 82]. We
demonstrate that LLM.265 effectively compresses various tensor
types in two parallel training scenarios, showcasing its versatility
and broad applicability.

5.1 Pipeline-parallel Training

We further demonstrate the effectiveness of LLM.265 in pipeline-
parallel training, where our approach achieves significant compres-
sion ratios: 78% for activations and 37% for their gradients when
communicating between pipeline stages.

Experimental Setup. We trained a 1.4B Pythia [8] model us-
ing 4-stage pipeline parallelism across 4 RTX 3090 GPUs, with
compressed communication between distinct pipeline stages. Our
training configuration used a sequence length of 2048, a micro-
batch size of 4, and 8 gradient accumulation steps. We utilized a
5M-sample subset of the Pile dataset [26], reserving 5000 samples
for validation and the rest for training.

Activation Compression. In Figure 9, we first verify the trans-
fer of effective activation compression from inference (§4.2) to
training using LLM.265(A), where we compress the activations to
3.5 bits. Compared to uncompressed training, LLM.265’s activation
compression is surprisingly beneficial. It not only reduces commu-
nication volume by 78% (from 16 bits to 3.5 bits) but also leads to
faster convergence. This is evidenced by lower training loss and
validation perplexity after 8K training steps (e.g., a validation per-
plexity of 24.1 compared to 42.7 for uncompressed training). We
hypothesize that this improvement stems from LLM.265 acting as
a denoising operation, filtering out noisy components in the ac-
tivations and clipping the outliers in the corresponding weights’
gradients during backpropagation [43, 88].

Gradient Compression. To further enhance communication
efficiency, we compress the gradients of activations in LLM.265(A)
+ GQ and LLM.265(A+G), as illustrated in Figure 9. However, our
experiments with LLM.265(A) + GQ reveal that gradients are more
challenging to compress. Even directly applying a group-wise 8-
bit RTN quantization to gradients proves ineffective, as the loss
deviates from uncompressed training after only a few hundred
steps. To address this issue, we introduce a residual compensation
method for gradient compression. First, we compress the gradient
G to approximately 3.5 bits, denoted as Comp(G). Next, We further
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Figure 9: Training loss and validation perplexity of Pythia 1.4B using pipeline parallelism.
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Figure 10: Training loss and validation perplexity of Pythia 160M using data parallelism.
compress the residual G — Comp(G) using a two-stage strategy Results and Analysis. In Figure 10, We first compare LLM.265
with different compression ratios: a) For the first 2500 steps, we with state-of-the-art approaches to compress the gradients of weights
use LLM.265 to compress the residual to 3.5 bits, achieving a loss in data parallelism: 1-bit Adam and 1-bit LAMB. Both baselines
curve similar to activation-only compression, and b) After 2500 achieve an average bits of 3.25, as they require a warm-up period
steps, we switch to 8-bit RTN quantization for the residual. This for the initial 15% of training iterations where gradients remain
two-stage approach is necessary because the training loss fails to uncompressed. Empirically, 1-bit Adam achieves a validation per-
continue decreasing after 2500 steps when using a 3.5-bit residual. plexity of 54.6, while 1-bit LAMB reaches 79.0. LLM.265, however,
This stagnation occurs because the range variance in gradients achieves 51.0 with an average of only 2.6 bits, close to that of 48.2 for
progressively increases from 1 to 3 orders of magnitude as training uncompressed training. To further explore the limits of our method,
progresses, with some dimensions contributing significantly more we introduce two variants with lower bit-widths. Our method can
to the loss. By employing this strategy, we achieve an average of compress the gradients to 1.4 bits with a 54.8 perplexity, which is
10.1 bits for the compressed gradient, calculated as ((3.5 + 3.5) * comparable to the best baseline using an average of 3.5 bits. When
2500 + (3.5 + 8) * 5500)/8000. Still, an overall compression rate we further reduce the bit-width to 0.8 bits, our method converges
of 37% in gradient is achieved (from 16 bits to 10.1 bits) and the early with a 78.7 validation perplexity, performing on par with the
final validation perplexity is 36.7, which is lower than that of full- 1-bit LAMB baseline but at a much lower bit-width. This demon-
precision training. strates the versatility of our method, as it can trade off between

compression ratios and trained model quality across a wide range
of bit-widths. Moreover, 1-bit Adam and 1-bit LAMB replace the

5.2 Data-parallel training widely adopted Adam optimizer, resulting in significant instability

Next, we show LLM.265 ’s ability to compress weight gradients during training, as evidenced by large fluctuations in training loss.

communicated between GPUs to 1.4-2.6 bits from the starting of In contrast, LLM.265 does not make any assumptions about the

data-parallel training without modifying optimizers. training progress, eliminates the need for a warm-up period, and
Experimental Setup. We trained the 160M Pythia model with maintains stability throughout training.

a per-GPU batch size of 8. We adopt the same dataset as in §5.1.
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Figure 11: Evaluation results of trained Pythia 160M models
on commonsense reasoning tasks.

In addition to these baselines, we also compare our method with
2-bit and 4-bit RTN quantization with a group size of 128. Our
results shows that directly quantizing gradients to 4 bits results
in a perplexity of 50.2, while the 2-bit variant completely fails to
converge. The compression quality ranks as follows: LLM.265 (2.6
bits) > RTN (4 bits) > LLM.265 (1.4 bits) > LLM.265 (0.8 bits) > RTN
(2 bits). Since RTN quantization is also a vanilla compression algo-
rithm, these results further demonstrate the superior compression
capability of LLM.265.

Model quality. To assess the quality of models trained with
LLM.265, we compare their accuracy on downstream tasks with
models trained without compression. The results are shown in
Figure 11. We find that both LLM.265 (2.6 bits) and LLM.265 (1.4
bits) achieve comparable accuracy with the uncompressed model.
LLM.265 (1.4 bits) maintains at least 95.2% of the uncomprssed
model’s accuracy, while for LLM.265 (2.6 bits), it is at least 96.6%.

6 Insights for LLM Accelerator Design

6.1 Limitations of NVENC/DEC

Despite LLM.265 achieving state-of-the-art information efficiency
for compressing tensors, it is currently bottlenecked by the limited
throughput of built-in video encoders and decoders on GPUs. Since
people typically watch videos at resolutions lower than 4K and at
frame rates lower than 60 frames per second, the video codecs on
hardware such as the NVENC and NVDEC engines on Nvidia GPUs
lack the incentive to support higher throughput. When used for
tensor compression in LLM.265 , these engines limit the training
and inference throughput. In our measurements, NVENC achieves
a throughput of around 1100MB/s for compressing tensors, while
NVDEC achieves a throughput of around 1300MB/s for decompress-
ing video bitstreams to tensors, limiting the GPU’s end-to-end com-
munication bandwidth to 1100MB/s. Additionally, video codecs on
existing GPUs only accept 8-bit inputs for video frames, requiring
the compute cores to handle conversions from various precisions
to 8-bit before executing the compression. This consumes compute
resources that could otherwise be allocated for model computation,
complicating system design.

In this section, we will delve deeper into the hardware imple-
mentation details of video codecs and propose augmentations for
the design of future tensor-specialized codecs and compression-
enabled training and serving systems. We found that video codecs

10
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Figure 12: Comparison of the chip die area between GPU (1),
CPU (3), NIC (2), and Video Codecs (a-d). Multiple instances
of video encoders or decoders are combined to achieve a total
throughput of 100Gb/s.

are highly cost-efficient, with many of their components being re-
dundant for tensor compression, offering opportunities for further
optimization. We envision future accelerators could trade minimal
cost to implement high-throughput tensor codecs, enabling more
scalable and efficient distributed LLM training and inference.

6.2 Die Area Analysis of Video Codecs and
Other Devices in LLM Datacenters

Comparisons of the die area of video codecs with other devices
commonly used in an LLM training data center, such as GPUs,
NICs?%, and CPUs, are shown in Figure 12. To measure and model
the hardware cost of these video codecs, we first obtained open-
source RTL hardware implementations of both the encoder [23, 24]
and the decoder [61, 71] for H.264 and H.265, respectively. We
synthesized, placed, and routed these hardware modules using the
ASAP7 [12] 7nm technology library. Note that a single instance of
the codec supports resolutions up to 3840 X 2160 and a throughput
of up to 60 frames per second. For fair comparisons, we normalized
the throughput of the encoders and decoders to match the 100Gbps
NIC bandwidth, thereby aggregating multiple instances of a video
encoder or decoder in parallel to achieve the desired throughput.
Looking at the die area comparison of these devices, we observed
that video codecs occupy significantly less space than other devices
in data centers. The die area of an RTX3090 GPU is 628 mm? , which,
when scaled down to 7nm [5], becomes 398m?, while a combination
of an H.264 encoder and decoder, each capable of processing up
to 100 Gbps, requires less than 2 mm? of die area. This is 199x
smaller than the GPU and 54x smaller than the Mellanox CX5
100Gbps Network Card. Therefore, adding more codecs incurs
only a negligible additional cost to the overall system while
significantly enhancing both the effective memory capacity

4The CX5 NIC die area was obtained by direct measurement, yielding dimensions of
12.14mm X 13.98 mm = 169.7 mm?.
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Table 3: Energy for Communication versus Compression
with Video Codecs and Customized Three-in-One Codecs.

Power | Area Energy/Bit

W) | (mm?) | (p))
NCCL End to End - - 5120
H.264 Enc (100Gbps) 1.1 0.96 167.8
H.264 Dec (100Gbps) 1.0 0.97 154.3
H.265 Enc (100Gbps) 11.0 11.7 1707.5
H.265 Dec (100Gbps) 43 2.1 665.4
Three-in-one Enc 0.78 0.70 97.8
(100Gbps T., 8K60fps V.)
Three-in-one Dec 0.58 0.58 63.5
(100Gbps T., 8K60fps V.)

and the effective communication bandwidth, which are two
of the most costly resources in the system.

As we have analyzed in §3, not all components of the video
codec work well for tensor compression; specifically, inter-frame
prediction, which includes motion prediction, significantly reduces
the compression ratio. Figure 12 (a-d) presents the zoomed-in die
layouts for the encoders and decoders, along with the die area
distribution for each component. This distribution shows that a
significant portion of the die area is spent on inter-frame predic-
tion and the frame buffer. If the inter-frame prediction is removed,
we save the die area spent for the inter-frame prediction logic
and drastically decrease the buffer size requirement as frames no
longer need to be maintained for analyzing inter-frame correlations.
However, that will also make the codec no longer work for video
encoding and decoding. In reality, the encoding and decoding of
video streams remains a highly demanding workload on consumer-
grade PC and mobile platforms, especially as video resolutions and
frame rates continue to rise. These mobile and consumer-grade
platforms often have limited memory capacity, memory bandwidth,
and communication bandwidth while also facing strict constraints
on energy efficiency and chip die area. Therefore, developing an
effective tensor codec is essential for efficiently deploying larger
and more advanced large language models (LLMs) on these plat-
forms at the same time. The dual demand for efficient video codecs
and tensor codecs makes it imperative to support both workloads
on these platforms. Ideally, a codec should function efficiently for
both applications, enabling hardware module reuse and achieving
high performance and efficiency across tasks.

7 Enhance Video Codecs for Tensor
Compression

In this section, we prototype and evaluate a novel three-in-one
codec that supports the compression and decompression of tensors,
videos, and images, as shown in Figure 13. We developed this codec
using the H.264 video codec [23, 61] as a foundation. There are two
main components of the H.264 codec: the first, illustrated in (b),
is the pipeline that includes intra-frame prediction, which can be
shared across all three input types. The second component, illus-
trated in (c), is specific to video processing and handles functions
such as inter-frame prediction and motion estimation.
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Figure 13: We modified the H.264 video codec to enable the
encoding and decoding of tensors, images, and videos. The
three-in-one encoder illustrated in this figure supports en-
coding tensors at a throughput of 100 Gbps and videos at 8K
resolution and 60 fps.

The three-in-one codec design prioritizes the reuse and augmen-
tation of the unified hardware compression pipeline depicted in
(b), which is used for tensor inputs (Figure 13@), image inputs
(@), and video inputs (®). Typically, video codecs are designed
to handle up to 8K resolution at 60fps, while tensor codecs often
require significantly higher bandwidth. To optimize resource allo-
cation, our three-in-one codec dedicates resources to support 8K
60fps video encoding and decoding in the video pipeline (c) while
augmenting the shared pipeline in (b) to sustain higher throughput
at 100Gbps, enabling efficient processing across all input types. To
support floating-point formats, we add a dedicated hardware block
for data-type conversion and alignment (Figure 13(a)), offloading
this work from the core compute units and improving efficiency.
It is worth noting that the alignment unit also provides mixed-
precision and micro-scaling support [67], matching the growing
adoption of mixed precision.

During video encoding and decoding, pipelines (b) and (c) are
active, while during tensor encoding and decoding, only (a) and (b)
are utilized, with (c) remaining idle. When both multimedia and
tensor-compression workloads are present, the shared pipeline is
statically partitioned for both workloads by software. In our design,
multimedia tasks receive higher priority because they are latency-
sensitive, whereas tensor-compression workloads are primarily
throughput-oriented therefore shared pipelines are allocated for
tensors with lower priority. Remarkably, the shared pipeline ac-
counts for 80% of the three-in-one encoder’s total area, showcasing
its reusability and efficiency compared to implementing separate
codecs for video and tensor processing.

Additionally, we incorporated support for encoding images us-
ing the AVC Image Format [79]. This format essentially adapts the
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Figure 14: Information efficiency comparison with existing
solutions: (a) Gradient compression MSE (lower is better) vs.
average bit width. (b) Average normalized model accuracy
(higher is better) across all evaluation datasets.

H.264 codec by disabling all inter-frame compression features, align-
ing it closely with the tensor encoding workflow, and seamlessly
integrating it into the three-in-one codec framework.

We implement and evaluate the three-in-one codec using the
same flow as in §6.2. The design targets the ASAP-7 [12] technology
library and is synthesized with Synopsys Design Compiler, followed
by placement and routing in Synopsys IC Compiler II. Table 3
summarizes the power and area characteristics of the three-in-
one codec implementation. The three-in-one codec demonstrates
superior area and power efficiency compared to existing video
codecs. The added support for video and image encoding introduces
only marginal overhead, as most of the resources are allocated to
the shared pipeline, which is effectively utilized across three input
types. To evaluate our proposed three-in-one codec, in §7.1, we
compare the three-in-one codec with existing approaches widely
used for data and tensor compression. In §7.2 and §7.3, we focus on
evaluating the performance impact and the scalability of deploying
the three-in-one codec into LLM infrastructures.

7.1 Comparing Video Codecs with Other
Compression Algorithms

Many existing works target the compression of various LLM tensors
(weights, activations, gradients) to reduce memory and communi-
cation overhead. Two primary strategies involve introducing cus-
tom numeric formats (e.g., MXFP [28, 67]) and applying hardware-
accelerated compression [40]; these can be used independently or
combined to enhance overall compression ratios. Among them,
microscaling floating-point (MXFP) formats and CABAC-based
hardware compression [40] have shown particular promise due
to their simplicity and demonstrated hardware efficiency. We im-
plement these baseline approaches using a chained pipeline that’s
frequently used in tensor compression [10, 40]: first converting
floating-point tensors to either MXFP or round to integer formats,
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Figure 15: Comparing Three-in-one codec with existing solu-
tions: (a) The total area of codec plus NIC required for achiev-
ing 100 Gbps end-to-end throughput. (b) The total energy of
codec plus NIC for transferring the Pythia-125M gradient
during one epoch. H., D, L., and C. represent Huffman, De-
flate, LZ4, and CABAC algorithms.

then applying one of four compression algorithms (Huffman, De-
flate, LZ4, or CABAC). This yields eight alternative "tensor codecs"
(a 2x4 grid) that we evaluate alongside our three-in-one codec on
the gradient, weight, and activation compression tasks.

Figure 14(a) plots the mean-absolute-error of gradient compres-
sion against bitrates. Under the same error budget, our three-in-one
codec consistently uses fewer bits per element than any of the
eight baselines, indicating superior information efficiency. We also
evaluate always-on compression, where we compress both weights
and activations during inference, using the same datasets that we
used for evaluation in Figure 5. The result of the average normal-
ized accuracy is shown in Figure 14(b). Again, our three-in-one
codec maintains higher inference accuracy at lower bitrates than
all baselines.

To evaluate hardware efficiency with variables controlled, we im-
plement and synthesize these baseline codecs based on open-source
RTL implementations [24, 40, 64, 71], all using the same technology
library and synthesis settings as our three-in-one codec. Figure 15
reports the total area of the communication system (including both
the NIC and the codec) required to sustain 100 Gbps effective band-
width, along with end-to-end energy consumption for one epoch
of Pythia-125M [8] gradient communication. Thanks to its higher
information efficiency, our three-in-one codec achieves the best
area and energy efficiency. This is not only due to the codec’s low
hardware cost and efficient hardware implementation but also due
to its superior information efficiency, which allows the cost associ-
ated with the NIC, being the largest contributor to the overall area
and power, to be greatly reduced by transferring less data.

7.2 Performance Impact of Compression

We developed an analytical model for modeling a distributed train-
ing cluster’s performance and energy consumption to investigate
the effect of enabling communication compression. The model takes
the LLM’s configuration and GPU specifications as input, including
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Figure 16: Impact of Communication Compression in Dis-
tributed LLM Training. The "Uncompressed Baseline" repre-
sents results without compression. The compress ratio deter-
mines the upper bound for speedup and energy efficiency.

memory capacity and GPU power. It then evaluates the perfor-
mance of the training process and the power consumption of the
GPUs, both with and without compression enabled. °.

In our experiments, we tested the effect of compression on LLaMa
7B model training performance, as illustrated in Figure 16(a). We
measured the cluster’s performance by controlling the total die
area budget, which could be allocated to GPUs, NICs, or codecs.
We tested over 2,000 configurations of the hardware and training
settings, including the number of GPUs, NICs, and codecs, as well
as the data-parallel and pipeline-parallel ranks. We compared the
performance and efficiency of three scenarios: 1) no communi-
cation compression, 2) communication compression using video
codecs (NVENC/DEC), and 3) communication compression using
our customized three-in-one codec. For each scenario, we plot-
ted the Pareto frontier for area versus normalized performance.
The results showed that scenarios with compression consistently
and significantly improved performance under a fixed area bud-
get. Furthermore, the three-in-one codec demonstrated superior
performance and area efficiency compared to NVENC/DEC. When
compared to the uncompressed scenario, the three-in-one codec
achieved a 1.7x speedup over the uncompressed baseline at an area
budget of 50,000 mm?. On the other hand, to maintain a normalized
performance of 2.6X, the three-in-one codec used 1.6X less total die
area than the baseline, highlighting the substantial benefits of this
codec for large-scale training.

7.3 Compression for Scalability and Energy
Efficiency

As models increase in scale, communication bottlenecks become
more severe due to the memory limitations of a single GPU, neces-
sitating the division of the model into smaller parts for distribution
across multiple GPUs. The communication bottleneck not only
hampers training efficiency but also translates to a higher amount

5To calibrate the model with realistic data, we run micro-benchmarks on servers to
verify the performance and measure the power used for communication. We measured
the end-to-end communication power of NCCL [57] as indicated in Table 3. NCCL
tests [56] was executed and power is measured using the power sensors on the Server
Board Management Controllers (BMC). The effect on the performance of the com-
munication systems are been verified against the Astra-SIM [84] LLM Infrastructure
simulator.
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of energy spent on transferring data. We calculate the energy con-
sumed for encoding/decoding one byte or transmitting one bit for
codecs and interfaces in Table 3. When comparing the energy used
for compressing and communicating, we observed that compres-
sion requires significantly less energy. For example, the combined
energy used for the three-in-one codec’s encoding and decoding is
% = 31.7X lower than that used for end-to-end communica-
tion with NCCL (as indicated by data from Table 3). As shown in §5,
video codecs achieve a compression ratio of 3-20X. For example, if
a 5X compression ratio on average can be achieved, it translates to
W = 4.32X energy efficiency compared to transferring
everything in an uncompressed format.

The modeling of compression-enabled training at the cluster
level is shown in Figure 16 (b), where we plot the energy efficiency
of using compressed communication using codecs versus increased
model size. Communication power will account for a significant
portion of the total power consumption for distributed LLM train-
ing. The larger the model is, the greater the percentage of power
consumed by communication. By employing communication com-
pression, the size of data being transmitted can be significantly
reduced, resulting in power efficiency several times better than if
left uncompressed. This highlights the importance of deploying
high-bandwidth customized three-in-one codecs on GPUs and ac-
celerators to ensure the scalability and sustainability of data centers
for training future larger and larger LLMs.

8 Conclusion

LLM.265 repurposed video codecs as general-purpose and versatile
tensor codecs. Leveraging the hardware video encoding/decoding
engines available on modern GPUs, LLM.265 achieves state-of-the-
art information efficiency for compressing weights, activations,
and gradients of LLMs. This greatly reduces the pressure on the
memory capacity and communication bandwidth of GPUs. To fully
unlock the potential of LLM.265, we propose integrating specialized
high throughput but cheap tensor codecs on future GPUs for more
efficient distributed LLM training and inference.
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