
RDMA Congestion Control: It’s
Only for the Compliant

John Snyder
Duke University
jsnyder@cs.duke.edu

Alvin R. Lebeck
Duke University
alvy@cs.duke.edu

Danyang Zhuo
Duke University
danyang@cs.duke.edu

Abstract—RDMA networks enable low latency and low CPU utilization, and their widespread
adoption in datacenters enables improved application performance. However, there are
performance isolation concerns for RDMA deployed in a shared cloud environment. In particular,
congestion control enforcement and congestion control algorithms in RDMA make the network
susceptible to performance hacking attacks, which give the attacker extra bandwidth and cause
severe congestion in the network. These attacks can increase short flow completion times by
several orders of magnitude. We surface a fundamental tradeoff in congestion control between
short flow completion time and performance isolation. We discuss this tradeoff and how existing
approaches do not provide a robust solution. We also advocate that researchers incorporate
performance isolation concerns into the design and evaluation of congestion control.

Introduction
Cloud computing eases resource management

and system administration for users while also
enabling cloud providers to efficiently utilize re-
sources. The widespread adoption of cloud com-
puting introduces new requirements for datacenter
hardware and software systems. One specific re-
quirement is performance isolation, whereby the
behavior of one application (user) cannot unfairly
affect the performance of another. System de-
signers introduced several mechanisms to support
performance isolation (e.g., cache partitioning,
cpu scheduling, virtual memory allocation, etc.)

As more workloads migrate to the cloud,
their performance requirements are also chang-
ing. Many datacenter applications demand high
throughput, low latency, and low CPU overheads.

Remote Direct Memory Access (RDMA) is a
possible solution to meet these increasing de-
mands. RDMA allows applications to communi-
cate without invoking system software on the data
path by offloading various networking tasks to
the hardware and exposing a simple Queue Pair
(QP) interface. Today, many technology compa-
nies such as Alibaba [1] and Microsoft [2] deploy
RDMA networks in their datacenters. Exploring
RDMA in application design is now a major topic
in the cloud systems community.

The natural next step is thus to bring the
benefits of RDMA to cloud users, but this requires
providing the performance isolation expected
with multiple mutually untrusted users sharing
the RDMA network. Since RDMA bypasses the
system network stack, performance isolation is

IT Professional Published by the IEEE Computer Society © 2019 IEEE 1

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3208746

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on November 03,2022 at 14:45:42 UTC from IEEE Xplore. Restrictions apply.

limited to techniques implemented on the RDMA
network interface (RNIC) and within the net-
work switches, including the congestion control
algorithm. Unfortunately, performance isolation
in RDMA congestion control has received little
attention. This work takes a first step toward
answering the question: Can misbehaved or ma-
licious users gain more bandwidth than their fair
share of bandwidth by exploiting current RDMA
congestion control implementations?

We focus our performance isolation analysis
on Infiniband and RoCE [3], because they are the
most commonly used RDMA standards. RoCE is
an appendix on the Infiniband specification and
implements the IB protocol layer in an Ethernet
network. We use IB and RoCE congestion control
as a proxy for RDMA networks. Malicious users
trying to gain more bandwidth is not new in
a traditional kernel-based datacenter networking
setting. For example, users can open multiple
TCP sockets to gain extra bandwidth [4]. Fur-
thermore, a user can use UDP in an attempt to
avoid congestion control. To disincentivize this
behavior, researchers developed mechanisms that
drop packets of users who are using too much
bandwidth via fair-queuing-based approaches [5].

RDMA networks differ from TCP networks
in two unique ways that render existing solutions
useless. First, applications offload communication
to an RNIC, and any software-based indirection
on the data path would undermine the latency
benefits of RDMA. Second, RDMA requires a
lossless network, so a congestion control policy
can not actively drop packets in the network as
in the existing fair-queuing-based approaches.

We analyze two major RDMA congestion
control mechanisms, DCQCN [6] and HPCC [1].
DCQCN is the default congestion control algo-
rithm in RoCE NICs from NVIDIA Networking.
Alibaba deploys HPCC and is currently in the
process of being standardized by the Internet En-
gineering Task Force (IETF). We uncover several
performance attacks that allow a user to obtain
substantially more bandwidth than is fair. These
attacks include:

• Parallel QP attack. Creating more than one
queue pair.

• Staggered QP attack. Sending data through a
set of queue pairs in a round-robin fashion to

completely circumvent congestion control.
• Shuffled Overlay Attack. Using multiple

overlay topologies for collective communica-
tion.

The key property that our attacks exploit is that
RDMA congestion control algorithms fundamen-
tally favor short flows, i.e., congestion control
is enforced on a per-queue-pair basis and each
queue pair starts at line rate.

These attacks allow a malicious user to harm
the network performance of other well-behaving
users. In our testbed experiments, an attacker
can obtain 72% of the available bandwidth with
a victim flow on a RoCE NIC using the DC-
QCN congestion control algorithm. Furthermore,
ignoring congestion control causes switch packet
buffers to fill with packets. This dramatically
extends packet queuing delay. In a simulated
RoCE datacenter using DCQCN, the 99.9% tail
of small flow completion times increases by 7
times. Since RDMA networks are lossless and can
suffer from tree saturation [7], these attacks could
theoretically render an entire network unusable as
congestion spreads through the network.

In addition to identifying the above attacks,
we uncover a fundamental tradeoff between short
flow completion times and the ability to mitigate
these attacks. RDMA congestion control proto-
cols start sending packets at line rate for several
reasons, but primarily to allow flows smaller than
the network Bandwidth Delay Product (BDP) to
send all packets in one RTT. However, when
a protocol allows a short flow to start at line
rate, a user could imitate short flow behavior by
breaking a long flow into several short flows and
continuously send packets at line rate. Therefore,
anytime a congestion control protocol provides
exceptions for a certain flow type, it creates
a vulnerability. Congestion control is an attack
vector in RDMA networks, and performance iso-
lation must be considered when designing and
evaluating congestion control algorithms.

We next provide background about enforc-
ing congestion control. We then describe vari-
ous RDMA performance attacks and demonstrate
them using a testbed and a simulator. This is
followed by a discussion of the tradeoff between
short flows and performance isolation and con-
clusion.

2 IT Professional

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3208746

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on November 03,2022 at 14:45:42 UTC from IEEE Xplore. Restrictions apply.

Background
Remote Direct Memory Access allows users

to directly interface with hardware resources on
an RDMA NIC (RNIC). RoCE and IB are the
most popular RDMA standards and both follow
the IB specification. In RoCE, users send mes-
sages along Queue Pairs (QPs), which are similar
to sockets in TCP. There are many types of QPs,
but we only consider the Reliable Connection
(RC) QP type in our experiments because it is
the only QP type that enables all operation types1

and only has one destination, which works well
with congestion control. However, RC has no
specific characteristics that make it susceptible to
our attacks, so our attacks likely work with any
QP type.

When implementing RoCE/IB in hardware,
there are three choices to enforce congestion
control. First, congestion control is optional in
IB/RoCE, so hardware is not required to support
it. The second option is for the hardware to
enforce congestion control per-QP, and the third
option is to enforce per-service level (per-SL)
[3]. Per-SL makes sense in certain topologies,
like a ring, where all QPs may share a common
path. However, in high radix topologies like a fat
tree, per-QP congestion control is more intuitive
because not all QPs on the same SL are throttled
when one QP experiences congestion.

The dangers of per-flow fairness are well
documented [4]. FairCloud [4] explores this space
extensively, proposing several different methods
to enforce rate-limiting to ensure that users cannot
simply open more connections to increase their
bandwidth allocations. However, only one of our
proposed attacks involves using multiple QPs
simultaneously to gain an advantage; the others
exploit QPs starting at line rate and only require
one QP to send packets at a time. Further, two of
the proposed methods in FairCloud require fair
queueing on switches [4]. This either requires a
virtual lane per-tenant, which is unimplementable,
or to approximate fair queueing with mechanisms
like Core-Stateless Fair Queueing (CSFQ)[5].
However, CSFQ and similar mechanisms require
dropping packets, so they are not suitable for
RoCE/IB.

1The Dynamically Connected Transport available in Nvidia
Networking NICs supports all types of operations, but it is not
part of the IB standard.

RDMA Congestion Control Attacks
We introduce three performance attacks that

work against the current IB/RoCE specification.
The first attack involves opening and sending
data on several QPs simultaneously. The second
attack also sends data on several QPs but does
so sequentially, continuously changing which QP
sends data. This allows a user to ignore con-
gestion control. The final attack involves chang-
ing between multiple equal-cost communication
overlays. By constantly changing the source-
destination pairs for communication, an applica-
tion can again ignore congestion control com-
pletely. All attacks cause congestion and allow
a malicious user to gain extra bandwidth.

Parallel QP Attack
The Parallel QP attack requires a user to open

several QPs to the same destination instead of
a single QP per destination. Because IB/RoCE
enforces congestion control on a per-QP basis,
the share of a bottleneck link is distributed based
on the number of QPs each host sends data
along. The parallel QP attack is similar to opening
multiple TCP sockets. However, since the RDMA
network is lossless, switches cannot drop packets
of misbehaving users, which is a solution to the
issue in lossy networks [5].

Staggered QP Attack
The staggered attack allows a user to ignore

congestion control. Unlike TCP sockets, each new
QP initially sends packets at line rate. If a user
continuously sends packets on new QPs, conges-
tion control is never triggered. An RNIC waits for
at least one RTT before it receives feedback from
the network to reduce a QP’s rate. This is because
destinations generate negative feedback, either
in the form of Backward Explicit Congestion
Notifications (BECNs) or Congestion Notification
Packets (CNPs). Sources take at least one RTT to
receive congestion feedback. Assuming that the
QP does not compete for RNIC resources, a QP
can send at least BDP packets before it throttles
its rate due to congestion.

Several factors affect the utility of a staggered
attack. In a 3 tier fat tree with 100Gbps links and
1us of propagation delay, the expected RTT of the
network is 12us. This means a QP sending at line
rate can send 153KB before it throttles its rate.

May/June 2019 3

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3208746

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on November 03,2022 at 14:45:42 UTC from IEEE Xplore. Restrictions apply.

(a) Default Rings (b) New Ring

Figure 1: Changing Ring to create more src/dst
pairs.

As network characteristics change, such as longer
delays or more hops, a QP can send more packets.
Another concern is the size of the message. If
the message size is 100MB and the BDP is
153KB, a user would need 650+ QPs to the same
destination. While this is not impossible, using
too many QPs can cause performance degradation
due to cache misses of QPs’ metadata. There
may be several ways to reduce the number of
QPs used. First, rates in IB/RoCE recover over
time, so when a QP is left idle while other QPs
send their data, the QPs rate eventually increases
back to line rate. DCQCN has parameters that
determine how quickly QP rates recover over
time. Second, a user could destroy old QPs and
set up new QPs while other QPs send data.

This attack is unique to RDMA networks.
TCP starts a connection by only sending a single
packet and slowly increasing the window over
time, so staggering connections to have a new
connection always starting harms performance.
RDMA network endpoints aggressively inject
traffic and only reduce their injection rate if they
detect congestion. By continuously starting new
connections, a user can send at line rate regardless
of congestion.

Shuffled Overlay Attack
The shuffled overlay attack exploits common

communication patterns to mitigate the effect
of congestion control. For example, distributed
data-parallel deep learning requires an all-reduce,
which is often implemented with a ring commu-
nication pattern to maximize bandwidth utiliza-
tion. Avoiding all to all communication allows a
user to shuffle communication overlays and thus
circumvent congestion control.

Figure 1 shows several unique rings a user
can create with just six servers. In these rings,

each server sends to a new destination, either by
reversing the original communication direction,
changing the overlay ring, or doing both. Figure
1(a) displays two rings, each going in a different
direction. Figure 1(b) changes the overlay, so all
the neighbors in the ring are new. As the system
scales, there are more opportunities to create
new rings. The number of possible overlays is
proportional to the number of servers. Assuming
all servers are connected in a clique, there are
n-1 equal-cost overlays if n > 8 where n is the
number of servers [8].

New servers, like the NVIDIA DGX A100
with multiple RNICs further exacerbate this issue.
In this case, a user can create even more source-
destination pairs.

Shuffling overlays enable a user to perform
the staggered and parallel attacks even if a system
enforces per-src/dst congestion control. A user
can perform the staggered attack by sending
across a new src/dst pair each RTT. This lets the
attacker send at line rate and ignore congestion
control. A user can perform the parallel attack by
sending across several overlays simultaneously.

Attack Evaluation
We demonstrate the parallel and staggered

attacks in a small cluster testbed and NS-3 sim-
ulations. We focus on the parallel and staggered
attacks since the shuffled overlay attack is com-
prised of these primitive attacks. All evaluations
take place on a cluster with 6 servers each with
a 100Gbps single port ConnectX5 RoCE NIC
connected to a 100Gbps Mellanox SN2100 Eth-
ernet switch. There is a single switch, but we
emulate a dumbbell topology by connecting the
switch to itself and forcing all traffic through
that link. Mellanox NICs use DCQCN as their
congestion control algorithm. The NICs and the
switch use the vendors default settings unless
otherwise specified.

We experiment further in NS-3 to show the
impact these attacks have in a larger setting. All
simulations run with code released by Alibaba
[9], which implements DCQCN [6] and HPCC
[1]. The simulations demonstrate the effects of
the attacks in a datacenter setting. We simulate
a fat-tree with eight switches per pod, 16 core
switches, and each switch is connected with a
400Gbps link. Each ToR is connected to 16

4 IT Professional

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3208746

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on November 03,2022 at 14:45:42 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Experiment Dumbbell Topology

servers, and each pod has four ToRs and four
Agg switches. Each server is connected to its ToR
with a 100Gbps link. The flow size distribution
is based on a Facebook Hadoop traffic pattern
[10]. To demonstrate the severity of these attacks
on network performance, we break up long flows
(>1MB) into small flows of 150KB, which is
approximately BDP. For the parallel attack, we
start all the new small flows at the same time.
When simulating the staggered attack, we space
the start of each flow by the RTT of the network.

Testbed Experiments
Parallel Experiment: We perform the par-

allel attack by running the ib write bw test on
4 server testbed. Figure 2 illustrates the experi-
mental topology. Both senders and receivers are
on the same side of the dumbbell, so the source-
destination pairs share the bottleneck link. On
one sender and receiver, we open several extra
QPs and run the write bandwidth test. The victim
sender and receiver only open one QP. Figure 3
shows how the attacker gains more bandwidth
as it opens more QPs in the default hardware
configuration. We omit error bars because all
standard deviations are within 1% of the mean.

This misallocation of bandwidth is due to
congestion control. The bar labeled ”16 No CC”
shows the results when we disable congestion
control in our RDMA NICs. Fair arbitration on
the switch shares the bandwidth fairly between
the two input ports.

Mellanox hardware does not allocate band-
width on a per-QP basis. If congestion control
enforces per-QP allocations, we expect that with
an extra QP the attacker would get two-thirds
of the bandwidth. However, the attacker receives
far less than that. After further investigation,
we discovered that our NICs did not follow the
IB specification2 and instead enforce congestion
control per destination. On our NICs, all QPs to

2Mellanox (now Nvidia) owns a patent on destination based
congestion control [11]. Some QPs (UD and Mellanox’s DCT
[12]) can send packets to multiple destinations, so per-QP con-
gestion control can throttle the rate of a QP even if the destination
and bottleneck changed.

Figure 3: Parallel QP Attack Testbed Results

the same destination use the same send rate.
QPs on the same RNIC share congestion

control information and send rate but do not split
the rate between the QPs. For example, consider
two sources sending to a shared destination on
a 100Gbps link. Source 1 opens two QPs and
source 2 opens 1 QP. Source 1 calculates that
it should send to the destination at a rate of
30Gbps. However, instead of splitting this rate
between the two QPs, both QPs send at a rate
of 30Gbps. Source 1 then sends at 60Gbps to
the destination. Source 2 only sends at 40Gbps.
Source 1 calculates a lower rate than source 2
(30Gbps vs 40Gbps) because Source 1 receives
more negative feedback from the network due to
its overall higher rate (60Gbps). This results in
neither per-QP fair nor per-src/dst fair.

To trick the hardware into doing per-QP con-
gestion control, we create multiple IP addresses
on the destination and open a new QP on each IP
address. This allows us to emulate the IB/RoCE
specification and per-QP congestion control. Fig-
ure 3 shows that in implementations that adhere to
the IB/RoCE spec, the attack can get a far larger
percentage of the bottleneck link.

Staggered Experiment: Next, we demon-
strate the staggered attack’s effectiveness in hard-
ware. We run the staggered attack with and with-
out a competing flow to show the upper bound
on performance and also rerun the parallel attack
to show the superiority of the staggered attack.
We use 30 QPs, and the bandwidth delay product
of our testbed’s network is 37.5KB. This enables
us to do a 1.125MB transfer for staggered at-
tacks. Figure 4 shows the staggered attack results.
Running the staggered attack without a competing
flow achieves a throughput of about 74Gb/s; the
maximum bandwidth we achieve on our 100Gb/s
RNICs is 92Gb/s. When we run the staggered
attack with a competing flow, the attacker receives

May/June 2019 5

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3208746

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on November 03,2022 at 14:45:42 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Parallel and Staggered Attack BW
1.125MB Transfer

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 1000 10000 100000 1x10
6

D
C

Q
C

N
 F

C
T

 S
lo

w
d

o
w

n
 (

9
9

%
ile

)

Flow Size (Bytes)

No Attack
Parallel Attack

Staggered Attack

Figure 5: Victim Traffic DC Simulation

60Gb/s. Since the link is 100Gb/s, the maximum
bandwidth the competing flow could receive is
40Gb/s. However, since we only achieve just over
90Gb/s, the competing flow receives less than
40Gb/s.

We can’t achieve the same performance as no
contention because of switch parameters and per-
port fair sharing on the switch. If the victim’s
injection rate is at least half of line-rate, then the
victim receives its fair share because the switch
only allocates more bandwidth to the attacker’s
port if the victim’s port does not send enough
traffic to saturate the link. Because the attacker
only sends 1.125MB and the switch does not
mark packets until the switch queue depth ex-
ceeds 200KB, the victim does not reduce its rate
enough for the attacker to achieve line rate in our
system. To demonstrate that a longer-lived attack
would be more detrimental to the victim flow, we
lower the marking threshold to 8KB, so the victim
backs off earlier. Figure 4 shows that ”Staggered
Low Marking” matches the theoretical limit of
the staggered attack.

Datacenter Simulations
To show the drastic effect these attacks have

on overall network health, we run 10ms of ran-
dom traffic with flow sizes based on Hadoop
traffic from Facebook [10]. We perform three
experiments. First, we run DCQCN with per-QP
fairness. We rerun the same traffic except we
break every flow >1MB into smaller flows of
150KB each, so a 1MB flow becomes six 150KB
flows and one 100KB flow. We start all these
flows at the same time. In our third experiment,
we simulate the staggered attack and break up
the large flows but wait for 13us (RTT of the
network) before starting each new flow. Figure
5 plots the 99% FCT slowdown of victim flows
from the three experiments. The FCT slowdown
is the relative slowdown to the flow’s theoretical
completion time without congestion (propagation
delay plus serialization delay). Victim flows are
smaller than 1MB because they did not break
into smaller flows to get more bandwidth. The
parallel and staggered attacks devastate the per-
formance of small flows. The 99% slowdown
of flows less than BDP goes from about ∼20x
without the attacks to over ∼80x with the parallel
attack and ∼140x with the staggered attack. We
observe similar trends when we performed the
same experiments with HPCC [1]. No matter the
congestion control algorithm, these attacks create
congestion because they allow a user to ignore
the congestion control.

Potential Solutions and Future Work
The current IB/RoCE specification leaves the

network susceptible to several performance at-
tacks, and solutions to the hacks expose a funda-
mental tradeoff between starting flows at line rate
and performance isolation. These attacks exist
because congestion control is enforced per-QP
and QPs start sending packets at line rate.

Solving this issue is difficult because the cur-
rent design has performance benefits. For exam-
ple, changing congestion control enforcement to
per-src/dst easily renders the staggered and paral-
lel attacks useless. However, enforcing congestion
control on a per-QP granularity and allowing QPs
to start at line rate is a performance optimization.
It allows short flows to send all their bytes as
quickly as possible. Enforcing congestion control
on a per-src/dst granularity can throttle the rate of

6 IT Professional

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3208746

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on November 03,2022 at 14:45:42 UTC from IEEE Xplore. Restrictions apply.

IB Spec. CTX-5 Per-src/dst CC
Parallel Vulner. Vulner. Secure

Staggered Vulner. Secure Secure
Shuffled Overlay Vulner. Vulner. Vulner.

SF. Penalty? No Yes Yes

Table 1: Various Environments Susceptibility to
Attack. Note: Vulner. = Vulnerable. SF. = Short
Flow.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1000 10000 100000 1x10
6

 1x10
7

H
P

C
C

 F
C

T
 S

lo
w

d
o
w

n

Flow Size (Bytes)

Per-QP 99%
Per-src/dst 99%

Per-QP 99.9%
Per-src/dst 99.9%

Figure 6: 99% and 99.9% tail latency of HPCC
flows with different congestion control enforce-
ment. The vertical line shows BDP.

flows when they start, and therefore short flows
do not complete as quickly. Table 1 qualitatively
summarizes this trade-off between isolation and
short flow completion time (penalty) by showing
attack vulnerability for various congestion control
methods, including our Mellanox hardware.

To demonstrate the trade-off between small
flow tail latency and performance isolation, we
run datacenter simulations. We use HPCC instead
of DCQCN since the trade-off is more apparent
in protocols with a congestion window and that
do not define idle behavior. Per-src/dst still causes
performance issues in DCQCN, but they are not
as pronounced as with HPCC.

Figure 6 shows the results of 50ms of Hadoop
traffic in a network using HPCC with different
congestion control enforcement. The 99.9% FCT
slowdown of flows between the size of 20KB-
110KB goes from 5-10x to 6-34x. This is a
dramatic increase for flows that are smaller than
the BDP (denoted with a vertical line in the
Figure) of the network. The 99% of flows also
take longer to complete, but the difference is less
pronounced.

We gain two insights from this result. First,
improving performance isolation in congestion
control protocols can impact application perfor-
mance. Second, researchers should design and
evaluate congestion control algorithms with per-

formance isolation in mind. We demonstrate that
congestion control enforcement dramatically im-
pacts performance and that it is vital to improv-
ing performance isolation. However, any solution
must not drastically harm short flow performance.

Previous solutions [5] solve performance iso-
lation issues if the network is lossy. However,
IB and RoCE networks are lossless and perform
better because bandwidth is not lost to drops,
end-hosts do not often wait for long retransmit
timeouts, and packets generally arrive in-order,
which removes the need for expensive reorder
resources on end-hosts.

To avoid short flows performing poorly, a
solution should start flows at line-rate and then
drop the new flow’s packets if the new flow re-
ceives too much bandwidth. Further, when drop-
ping packets, the solution should maintain packet
ordering and detect loss without packet timeouts.
This would maintain packet ordering without a
go back N retransmission procedure or expensive
reordering resources on destination end-hosts. A
solution that met this criteria would likely en-
sure performance isolation while still maintaining
strong performance for all flows.

Conclusion
Congestion Control ensures a network func-

tions efficiently and users share the network
fairly. However, this is only true if end users
cannot abuse their network access abstractions.
We present several issues with the IB/RoCE spec-
ification that allow a misbehaving user to gain an
unfair advantage over other users through con-
gestion control. We describe several performance
attacks and show their effectiveness in hardware
and in large-scale simulations. When exploring
the solution space for this issue, we uncover
a fundamental tradeoff between the completion
time of small flows and performance isolation.
Because of performance isolation issues, we ad-
vocate for several changes to how researchers de-
sign and evaluate congestion control. This issue is
critical as applications that depend on small short-
flow tail latencies move into shared environments.

Acknowledgment
This work was supported in part by the Na-

tional Science Foundation (CNS-1616947).

May/June 2019 7

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3208746

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on November 03,2022 at 14:45:42 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
1. Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,

Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, and M. Yu,

“Hpcc: High precision congestion control,” in Proceed-

ings of the ACM Special Interest Group on Data

Communication, SIGCOMM ’19, (New York, NY, USA),

p. 44–58, Association for Computing Machinery, 2019.

2. C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and

M. Lipshteyn, “Rdma over commodity ethernet at scale,”

in Proceedings of the 2016 ACM SIGCOMM Confer-

ence, SIGCOMM ’16, (New York, NY, USA), p. 202–215,

Association for Computing Machinery, 2016.

3. InfinibandTM Trade Association, InfiniBandTM Archi-

tecture Specification, 4 2020. Volume 1 Release 1.4.

4. L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,

S. Ratnasamy, and I. Stoica, “Faircloud: Sharing the

network in cloud computing,” SIGCOMM Comput. Com-

mun. Rev., vol. 42, p. 187–198, Aug. 2012.

5. I. Stoica, S. Shenker, and H. Zhang, “Core-stateless

fair queueing: Achieving approximately fair bandwidth

allocations in high speed networks,” in Proceedings of

the ACM SIGCOMM ’98 Conference on Applications,

Technologies, Architectures, and Protocols for Com-

puter Communication, SIGCOMM ’98, (New York, NY,

USA), p. 118–130, Association for Computing Machin-

ery, 1998.

6. Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

M. Zhang, “Congestion control for large-scale rdma

deployments,” SIGCOMM Comput. Commun. Rev.,

vol. 45, p. 523–536, aug 2015.

7. G. F. Pfister and V. A. Norton, ““hot spot” contention

and combining in multistage interconnection networks,”

IEEE Transactions on Computers, vol. 100, no. 10,

pp. 943–948, 1985.

8. T. W. Tillson, “A hamiltonian decomposition of k2m∗, 2m

≥ 8,” Journal of Combinatorial Theory, Series B, vol. 29,

no. 1, pp. 68–74, 1980.

9. “https://github.com/alibaba-edu/High-Precision-

Congestion-Control,” July 2020.

10. H. Zeng, J. Bagga, G. Porter, and A. Snoeren, “In-

side the social network’s (datacenter) network,” ACM

SIGCOMM Computer Communication Review, vol. 45,

pp. 123–137, 08 2015.

11. N. Bloch, B. Shlomo, E. Zahavi, and Z. Yaakov,

“Destination-based congestion control,” Apr 2014.

12. D. Crupnicoff, M. Kagan, A. Shahar, N. Bloch, and

H. Chapman, “Dynamically-connected transport ser-

vice,” Apr 2014.

John Snyder, is a research scientist at Nvidia Re-
search. His research interests are congestion control
in high-performance networks and parallel program-
ming models. He received a Ph.D. in computer sci-
ence from Duke University in 2022 and a B.S. in Com-
puter Science and Mathematics from Rhodes College
in 2018. Contact him at jsnyder@cs.duke.edu.

Alvin R. Lebeck, is a professor of Computer Science
and Electrical and Computer Engineering at Duke
University. He co-founded Phitonex in 2017, which
was acquired by Thermo Fisher Scientific in 2020.
His research interests are broadly in computer ar-
chitecture and systems. Prof. Lebeck received the
B.S. in Electrical and Computer Engineering (1989),
and the M.S. (1991) and Ph.D. (1995) in Computer
Science at the University of Wisconsin—Madison. He
is a member of ACM and an IEEE Fellow. Contact him
at alvy@cs.duke.edu.

Danyang Zhuo, is an assistant professor in the
Computer Science Department at Duke University.
His research interest is datacenter and cloud com-
puting. Prof. Zhuo received his B.S. in Electrical Engi-
neering (2013) at the University of Illinois - Urbana
Champaign and his Ph.D. (2019) in Computer Sci-
ence and Engineering at the University of Washing-
ton. Contact him at danyang@cs.duke.edu.

8 IT Professional

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3208746

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Duke University. Downloaded on November 03,2022 at 14:45:42 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background
	RDMA Congestion Control Attacks
	Parallel QP Attack
	Staggered QP Attack
	Shuffled Overlay Attack

	Attack Evaluation
	Testbed Experiments
	Datacenter Simulations

	Potential Solutions and Future Work
	Conclusion
	Acknowledgment
	REFERENCES
	Biographies
	John Snyder,
	Alvin R. Lebeck,
	Danyang Zhuo,

