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Abstract
As the scale and complexity of distributed workloads grows, performance is no longer

the sole objective sought by application developers and infrastructure operators, as they in-

creasingly demand cost efficiency and manageability. Existing system infrastructure strug-

gles to meet these goals. On the lower-level datacenter network stacks, existing solutions

rely on a library-based approach where tenants implement and control communication of

their workloads. Without insights of the infrastructure and other tenants, they achieve

sub-optimal performance while offering limited manageability in an inefficient way. On the

higher-level application deployment side, the space of deployment configuration has grown

intractably large for users to manually tune, especially with new workloads like machine

learning inference workflows and new infrastructure options like spot instances.

In this dissertation, I argue that decoupling the implementation of communication prim-

itives and the control of deployment strategies from distributed applications can improve

their performance, cost efficiency, and manageability. On the lower-level communication

side, we can implement common primitives via managed system services provided by the

infrastructure operators, enabling new performance optimization opportunities and better

manageability with negligible overheads. On the higher-level workload deployment side, we

can build systems that manage and optimize deployment strategies for new workloads on

new types of infrastructure, improving cost efficiency without sacrificing performance.

The contributions of this dissertation are the design, implementation and evaluation of

the following systems. (1) To improve the performance of remote procedure calls (RPCs)

and enhance manageability, we present mRPC, a system service that decouples RPC mar-

shalling and policy enforcement from applications, speeding up microservice applications

by up to 2.5x compared to existing solutions for enforcing polices. (2) To improve the per-

formance and manageability of collective communication, we introduce MCCS, a system

service that exposes collective communication abstractions to applications while provid-

ing control and flexibility to cloud providers for their implementation, improving tenant

collective performance by up to 2.4x compared with existing library based solutions. (3)
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To improve the performance and cost efficiency when deploying machine learning inference

workflows, we develop, JellyBean, a system service that optimizes and serves them over

heterogeneous infrastructure, reducing total serving cost by up to 58%; (4) To improve the

performance and cost efficiency for training mixture-of-experts (MoE) models, we build

Lazarus, a system service that manages and optimizes training of MoE models on spot in-

stances with resiliency and elasticity, enabling cost reductions while outperforming existing

checkpoint-based systems by up to 3.4x.
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1. Introduction
We have witnessed a significant growth in the scale of distributed workloads. For ex-

ample, Uber’s infrastructure is composed of 4500 microservices and they are deployed more

than 100,000 times each week [278]. Uber’s data platform hosts 1.5 exabytes of data using

Hadoop Distributed File System and serves over 370,000 Spark applications daily [277]. Be-

sides these traditional datacenter workloads, machine learning workloads have significantly

increased in the amount of compute, especially with the rise of large language models. For

instance, the 405B Llama 3 model is trained with a cluster of 16K GPUs [48] and requires

a total training time of 30.84M GPU hours [172].

The complexity in deploying these workloads also dramatically increased. For instance,

in the era of vision models, they are generally trained using pure data parallelism. However,

today’s LLMs are frequently beyond the memory capacity of a single GPU. They are gen-

erally trained with a combination of data, tensor and pipeline parallelism [187], where the

space of parallelism configurations is tremendously increased. With the emergence of sky

computing [296] and the advent of edge computing, distributed workloads may be deployed

on heterogeneous infrastructure, across edge and multiple clouds.

Although performance has always been a key optimization objective when deploying

these workloads, other factors like cost efficiency and manageability have recently gained

increasing attention. With the growing scale and complexity of distributed workloads, the

cost of running them has also surged significantly. It is estimated the training of the state-

of-the-art GPT-4 model costs around $100 million [289], while it takes about $700,000 per

day for OpenAI to serve ChatGPT [247]. With such exorbitant costs, both the infras-

tructure operators and application developers aim to improve not only the performance

of distributed workloads, but also their cost efficiency. In addition, infrastructure opera-

tors have expressed a growing demand for a higher degree of manageability. For instance,

there is a need to monitor and control the performance of certain Remote Procedure Calls

(RPCs) [22] between microservices developed by different teams [177], and infrastructure

operators may impose certain rate limiting and access control policies. For compute and
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communication intensive workloads like ML training, operation teams may impose cer-

tain quality of service (QoS) polices, enforcing different SLOs (e.g., deadlines) for different

models being trained [75, 63, 149].

Still, existing system stacks struggle to meet these goals. There are two primary chal-

lenges to address. First, there is information asymmetry between the applications and the

infrastructure providers. Second, the deployment choices of the workloads have expanded ex-

ponentially, as both the complexity of the workloads themselves and infrastructure grows.

Information asymmetry between applications and infrastructure providers. With the

advent of server virtualization, multi-tenant datacenters and public cloud providers expose

a black-box model for tenants to access to compute and network resources, with resource al-

location (e.g., vCPU, GPU, memory and network bandwidth) at per virtual machine level.

In existing datacenter system stacks, the network communication is handled by tenants

themselves using a library-based approach, where common communication primitives like

RPC and collective communication are implemented in libraries linked to tenants’ appli-

cations. On the one hand, tenant applications often make sub-optimal choices based on

fundamentally incomplete information. They are unaware of the information available to

the infrastructure providers, such as the physical cluster topology and workloads from other

tenants. On the other hand, infrastructure providers often have little to no observability

and control to the characteristics and behaviors of the applications.

In terms of performance, many optimizations of a distributed workload’s communication

strategies requires the information of the physical topology. Such strategy choices would

greatly impact the performance of the workloads, especially for communication-intensive

workloads like ML training. In a single tenant scenario where the developers also con-

trol the infrastructure, they can manually optimize their workloads accordingly; although

it requires strong system expertise. In a multi-tenant environment, however, such topol-

ogy information are not available to the tenants. As a consequence, this may leads to

sub-optimal communication paradigms, impairing the performance of the workloads. In
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addition, the optimal communication strategy for a workload also depends on other work-

loads’ communication patterns. Without a holistic view of all tenants when choosing the

strategy, different workloads may compete on shared resources (i.e., network links) and lead

to overall performance degradation [230, 54].

In terms of manageability, although existing solutions offer limited support for certain

types of communication primitive used in distributed workloads, they have significant over-

heads. For instance, a sidecar based architecture is typically used to enforce polices for

RPCs. With only a weak coupling to the application, a sidecar intercepts, processes and

forwards RPC messages via the operating system’s network stack. This approach leads

to many redundant marhsalling and unmarshalling steps, resulting in an overhead of up

to 2.8x in terms of tail latency and 0.56x in terms of goodput. For other communication

primitives like collective communication, there completely lacks a solution for such policy

enforcement.

In summary, with information asymmetry, existing tenant controlled library-based so-

lutions for datacenter communication achieve subpar performance and offer limited man-

ageability in an inefficient way.

Complex space of deployment choices of the workloads. In terms of workflows, for in-

stance, the landscape of machine learning has evolved from a single small model to complex

ML workflows composed of multiple ML operations [186] using inputs from different sources,

and significantly larger LLMs. The infrastructure is also becoming more heterogeneous. On

the one hand, with the advent of Internet of Things (IoT) devices like smart cameras and

speakers, complex workflows can partially utilize their varying on-board computing capabil-

ities. On the other hand, cloud now offers many different types of GPUs and even options

like spot instances that trade-offs availability for cost savings. Considering all these com-

plexities in the workloads and infrastructure leads to such a large search space, making

it intractably difficult for developers to manually tune the deployment configuration. To

enable application developers quickly deploy their workloads efficiently, we need system
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infrastructure that automatically optimizes the deployment strategies. However, existing

systems fail to apply to new types of workloads and take advantage of new infrastructure

options. For instance, existing ML serving systems only target a single model or a set of

models on homogenous infrastructure.

1.1 Dissertation Statement

Given these chanllenges, in this dissertation, I argue that decoupling the implementa-

tion of communication primitives and the control of deployment strategies from distributed

applications can improve their performance, cost efficiency, and manageability.

1.2 Dissertation Contributions

This dissertation makes the following contributions:

• Decoupling communication for performance and manageability: we rearchitect RPC

to decouple RPC marshalling and policy enforcement into a managed service, improv-

ing manageability with negligible overheads.

• Decoupling communication for performance and manageability: we rearchitect collec-

tive communication to decouple the implementation of various collective algorithms

into a managed service, for cloud providers to control and optimize collective traffic,

enabling novel performance optimizations and enhancing manageability.

• Decoupling application deployment for performance and cost efficiency: we design a

system that automatically optimizes and serves ML inference workflows on heteroge-

neous infrastructures, reducing serving costs.

• Decoupling application deployment for performance and cost efficiency: we build a

system that takes advantage of spot instances for cost-efficient training of mixture-

of-experts (MoE) models.

Decoupling RPC implementation into a managed service. Remote Procedure Call (RPC)

is a widely used abstraction for cloud computing. The programmer specifies type infor-

mation for each remote procedure, and a compiler generates stub code linked into each
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application to marshal and unmarshal arguments into message buffers. Increasingly, how-

ever, application and service operations teams need a high degree of visibility and control

over the flow of RPCs between services, leading many installations to use sidecars or ser-

vice mesh proxies for manageability and policy flexibility. These sidecars typically involve

inspection and modification of RPC data that the stub compiler had just carefully assem-

bled, adding needless overhead. Further, upgrading diverse application RPC stubs to use

advanced hardware capabilities such as RDMA or DPDK is a long and involved process,

and often incompatible with sidecar policy control.

We propose, implement, and evaluate a novel approach, where RPC marshalling and

policy enforcement are done as a system service rather than as a library linked into each

application. Applications specify type information to the RPC system as before, while

the RPC service executes policy engines and arbitrates resource use, and then marshals

data customized to the underlying network hardware capabilities. Our system, mRPC, also

supports live upgrades so that both policy and marshalling code can be updated transpar-

ently to application code. Compared with using a sidecar, mRPC speeds up a standard

microservice benchmark, DeathStarBench, by up to 2.5ˆ while having a higher level of

policy flexibility and availability.

Decoupling collective communication implementation into a managed service. Perfor-

mance of collective communication is critical for distributed systems. Using libraries to

implement collective communication algorithms is not a good fit for a multi-tenant cloud

environment because the tenant is not aware of the underlying physical network configura-

tion or how other tenants use the shared cloud network—this lack of information prevents

the library from selecting an optimal algorithm. We explore a new approach for collective

communication that more tightly integrates the implementation with the cloud network

instead of the applications. We introduce MCCS, or Managed Collective Communication

as a Service, which exposes traditional collective communication abstractions to applica-

tions while providing control and flexibility to the cloud provider for their implementations.
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Realizing MCCS involves overcoming several key challenges to integrate collective communi-

cation as part of the cloud network, including memory management of tenant GPU buffers,

synchronizing changes to collective communication strategies, and supporting policies that

involve cross-layer traffic optimization. Our evaluations show that MCCS improves tenant

collective communication performance by up to 2.4ˆ compared to one of the state-of-the-

art collective communication libraries (NCCL), while adding more management features

including dynamic algorithm adjustment, quality of service, and network-aware traffic en-

gineering.

Serving ML workflows on heterogeneous infrastructures. With the advent of ubiquitous

deployment of smart devices and the Internet of Things, data sources for machine learning

inference have increasingly moved to the edge of the network. Existing machine learning

inference platforms typically assume a homogeneous infrastructure and do not take into

account the more complex and tiered computing infrastructure that includes edge devices,

local hubs, edge datacenters, and cloud datacenters. On the other hand, recent AutoML

efforts have provided viable solutions for model compression, pruning and quantization for

heterogeneous environments; for a machine learning model, now we may easily find or even

generate a series of model variants with different tradeoffs between accuracy and efficiency.

We design and implement JellyBean, a system for serving and optimizing machine

learning inference workflows on heterogeneous infrastructures. Given service-level objectives

(e.g., throughput, accuracy), JellyBean picks the most cost-efficient models that meet the

accuracy target and decides how to deploy them across different tiers of infrastructures.

Evaluations show that JellyBean reduces the total serving cost of visual question answering

by up to 58% and vehicle tracking from the NVIDIA AI City Challenge by up to 36%,

compared with state-of-the-art model selection and worker assignment solutions. JellyBean

also outperforms prior ML serving systems (e.g., Spark on the cloud) up to 5x in serving

costs.
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System for MoE models training on spot instances. Sparsely-activated Mixture-of-Experts

(MoE) architecture has increasingly been adopted to further scale large language models

(LLMs) due to its sub-linear scaling for computation costs. However, frequent failures still

pose significant challenges as training scales. The cost of even a single failure is significant,

as all GPUs need to wait idle until the failure is resolved, potentially losing considerable

training progress as training has to restart from checkpoints. Existing solutions for effi-

cient fault-tolerant training either lack elasticity or rely on building resiliency into pipeline

parallelism, which cannot be applied to MoE models due to the expert parallelism strategy

adopted by the MoE architecture.

We present Lazarus, a system for resilient and elastic training of MoE models. Lazarus

adaptively allocates expert replicas to address the inherent imbalance in expert workload

and speeds-up training, while a provably optimal expert placement algorithm is developed

to maximize the probability of recovery upon failures. Through adaptive expert placement

and a flexible token dispatcher, Lazarus can also fully utilize all available nodes after failures,

leaving no GPU idle. Our evaluation shows that Lazarus outperforms existing MoE training

systems by up to 5.7x under frequent node failures and 3.4x on a real spot instance trace.

1.3 Dissertation Organization

In Chapter 2, we set the contexts for this dissertation. In Chapter 3, we study how

manageability is currently implemented with library-based RPC solutions and discuss its

problems. We present the design and implementation of mRPC to address these issues.

In Chapter 4, we discuss why library based approach for collective communication is an

ill fit for a multi tenant network, then we present MCCS for cloud provider managed and

optimized collective communication. In Chapter 5, we discuss the challenges of running ML

inference workflows on heterogeneous infrastructure, then we present our solution JellyBean.

In Chapter 6, we discuss the challenges of training MoE models on spot instances, and

present our resilient and elastic training system, Lazarus, to solve them. We conclude in

Chapter 7.
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2. Background
In this chapter, we offer background contexts for understanding the techniques proposed

in this dissertation. We discuss commonly used datacenter communication primitives. We

then motivate the need for manageability. Finally, we present some new types of workloads

and infrastructure.

2.1 Datacenter Communication Primitives

Today’s distributed applications have increasingly relied on off-the-shelf implementa-

tions of common communication primitives as core building blocks for communication be-

tween workers and different components. Two of the most widely used communication

primitives are remote procedure calls (RPCs) and collective communication.

2.1.1 Remote Procedure Calls

RPC allows developers to build networked applications using a simple and familiar pro-

gramming model [23], supported by several popular libraries such as gRPC [72], Thrift [257],

and eRPC [112]. It enables a client application to directly call a method of a server appli-

cation located on a different machine, just as if it was a local function call. The RPC model

has been widely adopted in distributed data stores [114, 256, 52], network file systems [242,

67], consensus protocols [200], data-analytic frameworks [45, 253, 298, 30, 274, 7, 158, 68],

cluster schedulers and orchestrators [130, 84], and machine learning systems [207, 1, 182].

Google found that roughly 10% of its datacenter CPU cycles are spent just executing gRPC

library code [115]. Because of its importance, improving RPC performance has long been

a major topic of research [23, 245, 18, 19, 279, 261, 276, 112, 179, 144, 38].

To use RPC, a developer defines the relevant service interfaces and message types in

a schema file (e.g., gRPC .proto file). A protocol compiler will translate the schema into

program stubs that are directly linked with the client and server applications. To issue an

RPC at runtime, the application simply calls the corresponding function provided by the

stub; the stub is responsible for marshalling the request arguments and interacting with the

transport layer (e.g., TCP/IP sockets or RDMA verbs). The transport layer delivers the
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FIGURE 2.1: Training time breakdown of models from various product groups at a large
social network company.

packets to the remote server, where the stub unmarshals the arguments and dispatches the

RPC request to a thread (eventually replying back to the client). We refer to this approach

as RPC-as-a-library, since all RPC functionality is included in user-space libraries that are

linked with each application. Even though the first RPC implementation [23] dates back to

the 1980s, modern RPC frameworks (e.g., gRPC [72], eRPC [112], Thrift [257]) still follow

this same approach.

A key design goal for RPC frameworks is efficiency. Google and Facebook have built

their own efficient RPC frameworks, gRPC and Apache Thrift. Although primarily focused

on portability and interoperability, gRPC includes many efficiency-related features, such as

supporting binary payloads. Academic researchers have studied various ways to improve

RPC efficiency, including optimizing the network stack [122, 303, 201], software hardware

co-design [112, 114], and overload control [38].

As network link speeds continue to scale up [219], RPC overheads are likely to become

even more salient in the future. This has led some researchers to advocate for direct

application access to network hardware [209, 15, 112, 303], e.g., with RDMA or DPDK.

Although low overhead, kernel bypass is largely incompatible with the need for flexible

and enforceable layer 7 policy control, as we discuss next. In practice, multiple security

weaknesses in RDMA hardware have led most cloud vendors to opt against providing direct

access to RDMA by untrusted applications [276, 166, 239, 129, 128, 308].

2.1.2 Collective Communication

Collective communication is fundamental to supporting many distributed computing

workloads, especially in distributed machine learning training and inference workloads. In
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distributed machine learning, collective communication operations are essential for comput-

ing and synchronizing activations and gradients across networked nodes. These communi-

cation primitives enable nodes to collaborate on shared data. For instance, AllReduce is a

collective operation that aggregates data from multiple processing units, applies a chosen

operator (e.g., sum), and then distributes the result back to ensure every node possesses

the same global outcome.

Similar to RPCs, existing implementations for collective communication follow a library-

based approach. Many popular collective communication libraries exist today, including

the NVIDIA Collective Communication Library (NCCL) [189], Intel MPI library [96],

OpenMPI [70], and Gloo [66]. These libraries provide common collective communication

primitives such as AllReduce and AllGather, which developers leverage by linking these

libraries directly into their applications. Beneath their high-level APIs, these libraries

implement primitives through various algorithms along with heavily-optimized, and some-

times hardware-specific implementations. For example, NCCL provides implementations

for AllReduce using both ring-based and tree-based algorithms. In Ring AllReduce, all

participating GPUs form a ring structure. At each step, the i-th GPU in the ring receives a

data chunk from GPU (i ´ 1) and forwards a chunk to GPU (i + 1). Beyond algorithm op-

timizations [282, 27, 249], GPUDirect RDMA for inter-host GPUs and direct GPU-to-GPU

interconnects (e.g., NVLink and XGMI) for intra-host GPUs further accelerate communi-

cation. The efficiency of these collectives largely relies on algorithms that reduce network

transmission.

How does a collective communication library picks a strategy for a distributed job? A

collective communication library has several built-in algorithms, and the library contains

logic to select one of them based on a set of static factors like data length and the number

of participants. Taking AllReduce as an example, OpenMPI uses several criteria to choose

the most suitable collective algorithm, including a combination of factors such as the size

of the data, the number of processes involved, the network architecture, and the bandwidth

and latency requirement of the algorithm [211, 81].
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The performance of collective communication has recently received significant attention

in the research community and industry, due to the rise of distributed deep learning. Much

efforts have been place in designing algorithms to improve the performance of collective

operations such as AllReduce and AllGather [232, 27, 249, 282, 203, 248], as they play

critical role in deciding the end-to-end deep learning performance.

Figure 2.1 shows a statistics of contributions of to the overall training time of models

across four major product groups at one of the largest social network company in the world.

Exposed (non-overlapping) computation, CPUØGPU memory copy, communication time,

and GPU idle time are measured. This breakdown confirms that data communication

constitutes a significant portion of the training time.

2.2 The Need for Manageability

As distributed workloads scale to large, complex deployment scenarios, there is an

increasing need for improving their manageability. It is reported that Alibaba’s GPU cluster

needs to handle tens of thousands of training jobs each day [292]; Uber’s infrastructure has

4500 microservices. Such complexity demands many manageability features. We classify

the needs into three categories: 1) Observability: Provide detailed telemetry. 2) Policy

Enforcement: Allow operators to apply custom policies to applications 3) Upgradability:

Support software upgrades while minimizing downtime to applications.

Observability. The nature of distributed workloads implies that the end-to-end perfor-

mance of an application is collectively determined by multiple nodes, including compu-

tation and communication. Observability into an application’s behavior empowers both

application developers and infrastructure operators to troubleshoot and optimize their ap-

plications. As communication plays an increasingly important role in modern workloads like

microservices and distributed machine learning, there has been a growing interest in enhanc-

ing observability into the underlying communication substrates [314, 173, 307]. In RPCs,

developers and operators want to collect metrics like latency, error rates within the traffic

and overall volume of traffic. Such metrics help them identify bottlenecked components,
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assess scaling decisions and prevent performance regression. In collective communication,

collecting information like collective bandwidth and latency not only help operators to at-

tribute performance regression and training failures, but also help developers to optimize

their model parallelism strategies [310].

Policy Enforcement Infrastructure operator teams have sought for more control over the

applications, enforcing various polices in order to restraint their behaviors, limit and regu-

late their performance and resource usages. For instance, in microservices, rate limits may

be imposed on certain services to mitigate issues from an excessive number of RPC calls;

operators may enable access control to only allow certain types of requests. In distributed

machine learning, operators may enforce some quality of service polices to prioritize infer-

ence workloads over training [75]; network traffic engineering can be introduced to reduce

congestion and maintain performance consistency of certain jobs [174].

Upgradability Many building blocks used by applications are frequently updated. For

example, gRPC has a monthly or two-month release cycle for bug fixes and new features [73].

NCCL is also periodically updated to introduce new algorithmic optimizations and support

new hardware.

2.3 New Workloads and Infrastructure
2.3.1 Machine Learning Inference Workflows

ML Inference Workflows There is a growing complexity in machine learning inference work-

loads both in terms of the workloads themselves as well as the computing and networking

infrastructures. These workloads often involve multiple ML operators that together form

a larger ML workflow1; each can be a directed acyclic graph (DAG) of ML or relational

operators. For each ML operator, there are often choices of models (e.g., YOLO [235],

Faster R-CNN [236]) or the same model architectures with different hyperparameters (e.g.,

number of layers, neural network size, choice of activation functions); inputs to the ML

workflows are often collected by sensors deployed at the edge, including video cameras

and an ever-expanding array of Internet-of-Things (IoT) devices. These devices may have
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varying on-board compute [288] and are connected to more powerful edge-local and cloud

computing services over the network.

Here we provide several examples of such ML inference workflows:

• NVIDIA AI City challenge: Tracking vehicles across neighboring intersections is an

important ML query that allows people to understand and improve transportation

efficiency [2]. The workflow is shown in Figure 2.2 with video inputs from multiple

cameras of neighboring traffic intersections. It first detects objects on each individual

video stream, and then performs an object re-identification (ReID) step to extract key

features per detected car. A tracking module is used to find car traces in each video

stream, followed by a clustering module to trace cars across different video streams.

• Wearable health: detecting anomalous heart signals.

• Personal assistant: answering complex human voice commands using Internet data.

One common characteristic is that they all rely on a set of loosely-coupled operators

(i.e., operators that do not share global states but only depend on prior outputs), each of

which uses an ML model or a traditional data processing module; e.g., a model to tokenize

the text or relational operators such as reduce and join [21, 163]. The output of a previous

operator is the input of the next, therefore formulating a workflow or logic plan in directed

acyclic compute graph (DAG). Breaking down an ML query into workflows that consist

of independent operators has been highly leveraged in prior research and production [250,

160]. Doing so promotes the reuse of trained models and operators to ease the development

of the serving system as well as to boost performance due to shared computations [290,
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135, 16, 159]; each module also can be improved independently to accelerate the application

development.

2.3.2 Large Language Models

Building on the Transformer architecture, large language models (LLMs) have revolu-

tionized the field of natural language processing as their capabilities continue to grow with

the exponential scaling of model parameters. Today’s LLMs far exceed the memory capacity

of a single GPU, they rely on various parallelisms to distribute the model parameters and

states for training and serving. For example, in data parallelism [143], the model parameters

are copied on each GPU while the data is distributed among them, gradients are aggregated

across all GPUs using AllReduce. In tensor parallelism [252], the model is partitioned in

a way that tensors are scattered among multiple GPUs. In pipeline parallelism [188], the

model is divided vertically that different GPUs compute different layers. Training LLMs

have become increasingly costly, requires huge amount of GPUs for extended periods of

time [172, 156]. The next generation of datacenters, with over 100,000 GPUs, costs more

than $123 million annually just in electricity bills alone [246].

2.3.3 Spot Instances

Many public clouds now provide spot instances that provide significant cost savings,

albeit at a price that they can be preempted at any time. For instance, AWS’s spot

instances are up to 70% cheaper than on-demand ones [268]. These spot instances run on

sparse capacity, and may be preempted to offer capacity for on-demand instances. Frequent

preemptions on spot instances pose significant challenges to utilize them for cost savings.

Since preemptions are essentially "failures", without efficient failure handling and recovery,

workloads that deployed on spot instances may struggle to make progress.
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3. mRPC: Remote Procedure Call as a Managed System
Service

As a first step towards decoupling communication, we focus on remote procedure calls

(RPCs). The growing need of manageability leads to the development of sidecar based

approaches to enforce polices under the library based RPC architecture. However, we find

the libary and sidecar based solutions have some fundamental limitations, offering limited

manageability features with significant overheads. To address this issue, in this chapter,

we introduce mRPC, our alternative design where RPC is implemented as provided as a

managed service.

3.1 Introduction

Recently, application and network operations teams have found a need for rapid and

flexible visibility and control over the flow of RPCs in datacenters. This includes monitoring

and control of the performance of specific types of RPCs [178], prioritization and rate

limiting to meet application-specific performance and availability goals, dynamic insertion

of advanced diagnostics to track user requests across a network of microservices [60], and

application-specific load balancing to improve cache effectiveness [17], to name a few.

The typical architecture is to enforce policies in a sidecar—a separate process that medi-

ates the network traffic of the application RPC library (Figure 3.1a). This is often referred

to as a service mesh. A number of commercial products have been developed to meet the

need for sidecar RPC proxies, such as Envoy [50], Istio [97], HAProxy [80], Linkerd [152],

Nginx [190], and Consul [40]. Although some policies could theoretically be supported by

a feature-rich RPC runtime linked in with each application, that can slow deployment—

Facebook recently reported that it can take months to fully roll out changes to one of its

application communication libraries [59]. One use case that requires rapid deployment is to

respond to a new application security threat, or to diagnose and fix a critical user-visible

failure. Finally, many policies are mandatory rather than discretionary—the network oper-

ations team may not be able to trust the library code linked into an application. Example
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mandatory security policies include access control, authentication/encryption [40], and pre-

vention of known exploits in widely used network protocols such as RDMA [239].

Although using a sidecar for policy management is functional and secure, it is also

inefficient. The application RPC library marshals RPC parameters at runtime into a buffer

according to the type information provided by the programmer. This buffer is sent through

the operating system network stack and then forwarded back up to the sidecar, which

typically needs to parse and unwrap the network, virtualization, and RPC headers, often

looking inside the packet payload to correctly enforce the desired policy. It then re-marshals

the data for transport. Direct application-level access to network hardware such as RDMA

or DPDK offers high performance but precludes sidecar policy control. Similarly, network

interface cards are increasingly sophisticated, but it is hard for applications or sidecars

to take advantage of those new features, because marshalling is done too high up in the

network stack. Any change to the marshalling code requires recompiling and rebooting each

application and/or the sidecar, hurting end-to-end availability. In short, existing solutions

can provide good performance, or flexible and enforceable policy control, but not both.
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In this chapter, we propose a new approach, called RPC as a managed service, to address

these limitations. Instead of separating marshalling and policy enforcement across different

domains, we combine them into a single privilege and trusted system service (Figure 3.1b)

so that marshalling is done after policy processing. In our prototype, mRPC for managed

RPC, the privileged RPC service runs at user level communicating with the application

through shared memory regions [19, 14, 166]. However, mRPC could also be integrated

directly into the operating system kernel with a dynamically replaceable kernel module [176].

Our goals are to be fast, support flexible policies, and provide high availability for appli-

cations. To achieve this, we need to address several challenges. First, we need to decouple

marshalling from the application RPC library. Second, we need to design a new policy en-

forcement mechanism to process RPCs efficiently and securely, without incurring additional

marshalling overheads. Third, we need to provide a way for operators to specify/change

policies and even change the underlying transport implementation without disrupting run-

ning applications.

We implement mRPC, the first RPC framework that follows the RPC as a managed ser-

vice approach. Our results show that mRPC speeds up DeathStarBench [62] by up to 2.5ˆ,

in terms of mean latency, compared with combining state-of-art RPC libraries and sidecars,

i.e., gRPC and Envoy, using the same transport mechanism. Larger performance gains are

possible by fully exploiting network hardware capabilities from within the service. In addi-

tion, mRPC allows for live upgrades of its components while incurring negligible downtime

for applications. Applications do not need to be re-compiled or rebooted to change policies

or marshalling code. mRPC has three important limitations. First, data structures passed

as RPC arguments must be allocated on a special shared-memory heap. Second, while

we use a language-independent protocol for specifying RPC type signatures, our prototype

implementation currently only works with applications written in Rust. Finally, our stub

generator is not as fully featured as gRPC.

In this chapter, we make the following contributions:

• A novel RPC architecture that decouples marshalling/unmarshalling from RPC li-
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braries to a centralized system service.

• An RPC mechanism that applies network policies and observability features with both

security and low performance overhead, i.e., with minimal data movement and no

redundant (un)marshalling. The mechanism supports live upgrade of RPC bindings,

policies, transport, and marshalling without disrupting running applications.

• A prototype implementation of mRPC, along with an evaluation on both synthetic

workloads and real applications.

3.2 Adding Manageability to RPC Libraries?

As the need for manageability for RPC applications grows, one natural question to

ask is: is it possible to add these properties without changing existing RPC libraries? For

observability and policy enforcement, the state-of-the-art solution is to use a sidecar (e.g.,

Envoy [50] or Linkerd [152]). A sidecar is a standalone process that intercepts every packet

an application sends, reconstructing the application-level data (i.e., RPC), and applying

policies or enabling observability. However, using a sidecar introduces substantial perfor-

mance overhead, due to redundant RPC (un)marshalling. This RPC (un)marshalling, for

example, in gRPC+Envoy, including HTTP framing and protobuf encoding, accounts for

62-73% overhead in the end-to-end latency [314]. In our evaluation (§3.7), using a sidecar

increases the 99th percentile RPC latency by 180% and decreases the bandwidth by 44%.

Figure 3.1a shows the (un)marshalling steps invoked as an RPC traverses from a client to

a server and back. Using a sidecar triples the number of (un)marshalling steps (from 4 to

12). In addition, the sidecar approach is largely incompatible with the emerging trend of

efficient application-level access to network hardware. Using sidecars means data buffers

have to be copied between the application and sidecars, reducing the benefits of having

zero-copy kernel-bypass access to the network.

Finally, using sidecars with application RPC libraries does not completely solve the

upgradability issue. While policy can often be changed dynamically (depending on the

feature set of the sidecar implementation), marshalling and transport code is harder to
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change. To fix a bug in the underlying RPC library, or merely to upgrade the code to

take advantage of new hardware features, we need to recompile the entire application (and

sidecar) with the patched RPC library and reboot. Any scheduled downtime has to be com-

municated explicitly to the users of the application or has to be masked using replication;

either approach can lead to complex application life-cycle management issues.

We do not see much hope in continuing to optimize this RPC library and sidecar approach

for two reasons. First, a strong coupling exists between a traditional RPC library and

each application. This makes upgrading the RPC library without stopping the application

difficult, if not impossible. Second, there is only weak or no coupling between an RPC

library and a sidecar. This prevents the RPC library and the sidecar from cross-layer

optimization.

Instead, we argue for an alternative architecture in which RPC is provided as a managed

service. By decoupling RPC logic, e.g., (un)marshalling, transport interface, from the

application, the service can simultaneously provide high performance, policy flexibility, and

zero-downtime upgrades.

3.3 Overview

Our system, mRPC, realizes the RPC-as-a-managed-service abstraction while main-

taining similar end-to-end semantics as traditional RPC libraries (e.g., gRPC, Thrift). The
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goals for mRPC are to be fast, support flexible policy enforcement, and provide high avail-

ability for applications.

Figure 3.2 shows a high-level overview of the mRPC architecture and workflow, breaking

it down into three major phases: initialization, runtime, and management. The mRPC

service runs as a non-root, user-space process with access to the necessary network devices

and a shared-memory region for each application. In each of the phases, we focus on the

view of a single machine that is running both the RPC client application and the mRPC

service. The RPC server may also run alongside an mRPC service. In this case, mRPC-

specific marshalling can be used. However, we also support flexible marshalling to enable

mRPC applications to interact with external peers using well-known formats (e.g., gRPC).

In our evaluation, we focus on cases where both the client and server employ mRPC.

The initialization phase extends from building the application to how the application

binds to a specific RPC interface. 1 Similar to gRPC, users define a protocol schema. The

mRPC schema compiler uses this to generate stub code to include in their application. We

illustrate this using a key-value storage service with a single Get function. 2 When the

application is deployed, it connects with the mRPC service running on the same machine

and specifies the protocol(s) of interest, which are maintained by the generated stub. 3

The mRPC service also uses the protocol schema to generate, compile, and dynamically

load a protocol-specific library containing the marshalling and unmarshalling code for that

application’s schemas1. This dynamic binding is a key enabler for mRPC to act as a long-

running service, handling arbitrary applications (and their RPC schemas). 2

At this point, we enter the runtime phase in which the application begins to invoke

RPCs. Our approach uses shared memory between the application and mRPC, containing

both control queues as well as a data buffer. 4 The application protocol stub produced

by the mRPC protocol compiler can be called like a traditional RPC interface, with the

exception that data structures passed as arguments or as return values must be allocated

1 Note that such libraries may be prefetched and/or cached to optimize the startup time.

2 The dashed box of "Stub" and "libApp" means they are generated code.
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on a special heap in the shared data buffer. As an example, we show an excerpt of Rust-

like pseudocode for invoking the Get function. 5 Internally, the stub and mRPC library

manage RPC calls and replies in the control queues along with allocations and dealloca-

tions in the data buffer. 6 The mRPC service operates over the RPCs through modular

engines that are composed to implement the per-application datapaths (i.e., sequence of

RPC processing logic); each engine is responsible for one type of task (e.g., application in-

terface, rate limiting, transport interface). Engines do not contain execution contexts, but

are rather scheduled by runtimes in mRPC that correspond to kernel-level threads; dur-

ing their execution, engines read from input queues, perform work, and enqueue outputs.

External-facing engines (i.e., frontend, transport) use asynchronous control queues, while

all other engines are executed synchronously by a runtime. Application control queues are

contained in shared memory with the mRPC service.

This architecture, along with dynamic binding, enables mRPC to operate over RPCs

rather than packets, avoiding the high overhead of traditional sidecar-based approaches. Ad-

ditionally, the modular design of mRPC’s processing logic enables mRPC to take advantage

of fast network hardware (e.g., RDMA and smartNICs) in a manner that is transparent to

the application. A key challenge, which we will address in §3.4.2, is how to securely enforce

operator policies over RPCs in shared memory while minimizing data copies.

Finally, mRPC aims to improve the manageability of RPCs by infrastructure operators.

Here, we zoom out to focus on the processing logic across all applications served by an

mRPC service. 7 Operators may wish to apply a number of different policies to RPCs

made by applications, whether on an individual basis (e.g., rate limiting, access control) or

globally across applications (e.g., QoS). mRPC allows operators to add, remove, update,

or reconfigure policies at runtime. This flexibility extends beyond policies to include those

responsible for interacting with the network hardware. A key challenge, which we will

address in §3.4.3, is in supporting the live upgrade of mRPC engines without interrupting

running applications (and while managing engines sharing memory queues).
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3.4 Design

In this section, we describe how mRPC provides dynamic binding, efficient policy and

observability support, live upgrade, and security.

3.4.1 Dynamic RPC Binding

Applications have different RPC schemas, which ultimately decide how an RPC is mar-

shalled. In the traditional RPC-as-a-library approach, a protocol compiler generates the

marshalling code, which is linked into the application. In our design, the mRPC service

is responsible for marshalling, which means that the application-specific marshalling code

needs to be decoupled from an RPC library and run inside the mRPC service itself. Failing

to ensure this separation would allow arbitrary code execution by a malicious user.

Applications directly submit the RPC schema (and not marshalling code) to the mRPC

service. The mRPC service generates the corresponding marshalling code, then compiles

and dynamically loads the library. Thus, we rely on our mRPC service code generator to

produce the correct marshalling code for any user-provided RPC schema. For the initial

handshake between an RPC client and an RPC server, the two mRPC services check that

the provided RPC schemas match, and if not, the client’s connection is rejected.

There are three remaining questions. First, what are the responsibilities of the in-

application user stub and mRPC library? In mRPC, applications rely on user stubs to

implement the abstraction as specified in their RPC schema. This means we still need to

generate the glue code to maintain the traditional application programming interface. Our

solution is to provide a separate protocol schema compiler, which is untrusted and run by

application developers, to generate the user stub code that does not involve marshalling

and transport. The application RPC stub (with the help of the mRPC library) creates a

message buffer that contains the metadata of the RPC, with typed pointers to the RPC

arguments, on the shared memory heap. The message is placed on a shared memory queue,

which will be processed by the mRPC service. The receiving side works in a similar way.

Second, does this approach increase RPC connect/bind time? Implemented naively,
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this design will increase the RPC connect/bind time because the mRPC service has to

compile the RPC schema and load the resulting marshalling library when an RPC client

first connects to a corresponding server (or equivalently when an RPC server binds to the

service). However, this latency is not fundamental to our design, and we can mitigate it in

the following way. The mRPC service accepts RPC schemas before booting an application,

as a form of prefetching. Given a schema, it compiles and caches the marshalling code. At

the time of RPC connect/bind, the mRPC service simply performs a cache lookup based on

the hash of the RPC schema. If it exists within the cache, the mRPC service will load the

associated library; otherwise, the mRPC service will invoke the compiler to generate (and

subsequently cache) the library. This reduces the connect/bind time from several seconds

to several milliseconds.

Third, when new applications arrive, do existing applications face downtime? The multi-

threaded mRPC service is a single process that serves many RPC applications; however,

the marshalling engines for different RPC applications are not shared. They are in different

memory addresses and can be (un)loaded independently. We will describe in §3.4.3 how to

load/unload engines without disrupting running applications.

3.4.2 Efficient RPC Policy Enforcement and Observability

We have one key idea to allow efficient RPC policy enforcement and observability:

senders should marshal once (as late as possible), while receivers should unmarshal once

(as early as possible). On the sender side, we want to support policy enforcement and ob-

servability directly over RPCs from the application, and then marshal the RPC into packets.

The receiver side is similar: packets should be unmarshalled into RPCs, applying policy

and observability operations, and then delivered directly to the application. Compared

to the traditional RPC-as-a-library approach with sidecars, this eliminates the redundant

(un)marshalling steps (see Figure 3.1).

Data: DMA-capable shared memory heaps. Our design is centered around a dedicated

shared memory heap between each application and the mRPC service. (Note that this heap
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is not shared across applications.) Applications directly create data structures, which may

be used in RPC arguments, in a shared memory heap with the help of the mRPC library.

Each application has a separate shared memory region, which provides isolation between

(potentially mutually distrusting) applications. The mRPC library also includes a standard

slab allocator for managing object allocation on this shared memory. If there is insufficient

space within the shared memory, the slab allocator will request additional shared memory

from the mRPC service and then map it into the application’s address space. The mRPC

service has access to the shared memory heap, allowing it to execute RPC processing logic

over the application’s RPCs, but also maintains a private memory heap for necessary copies.

Figure 3.3 shows an example workflow that includes access control for a key-value store

service. Having the data structures directly in the shared memory allows an application

to provide pointers to data, rather than the data itself, when submitting RPCs to the

mRPC service. We call the message sent from an application to the mRPC service an RPC

descriptor. If there are multiple RPC arguments, the RPC descriptor points to an array of

pointers (each pointing to a different argument on the heap).

Let us say we have an ACL policy that rejects an RPC if the key matches a certain

string. The mRPC service first copies the argument (i.e., key), as well as all parental data

structures (i.e., GetReq), onto its private heap. This is to prevent time-of-use-to-time-of-

check (TOCTOU) attacks. Since applications have access to DMA-capable shared memory

at all times, an application could modify the content in the memory while the mRPC

service is enforcing policies. Copying arguments is a standard mitigation technique, similar

to how OS kernels prevents TOCTOU attacks by copying system call arguments from user-

to kernel-space. This copying only needs to happen if the policy behavior is based on

the content of the RPC. We demonstrate in §3.7.2 that even with such copying, mRPC’s

overhead for an ACL policy is much lower than gRPC + Envoy. The RPC descriptor is

modified so that the pointer to the copied argument now points to the private heap. On

the receiver side, the TOCTOU attack is not relevant, but we need to take care not to place

RPCs directly in shared memory. If there is a receive-side policy that depends on RPC
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argument values, the mRPC service first receives the RPC data into a private heap; it copies

the RPC data into the shared heap after policy processing. This prevents the application

from reading RPC data that should have been dropped or modified by the policies. Note

that we can bypass this copy when processing does not depend on RPC argument values

(e.g., rate limits). During ACL policy enforcement, the RPC is dropped if the key argument

is contained in a blocklist. Note that if an RPC is dropped, any further processing logic is

never executed (including marshalling operations).

Finally, at the end of the processing logic, the transport adapter engine executes. mRPC

currently supports two types of transport: TCP and RDMA. For TCP, mRPC uses the

standard, kernel-provided scatter-gather (iovec) socket interface. For RDMA, mRPC uses

the scatter-gather verb interface, allowing the NIC to directly interact with buffers on the

shared (or private) memory heaps containing the RPC metadata and arguments. For both

TCP and RDMA, mRPC provides disjoint memory blocks to the transport layer directly,

eliminating excessive data movements.3

Control: Shared-memory queues. To facilitate efficient communication between an

application and the mRPC service, we use shared memory control queues. mRPC allocates

two unidirectional queues for sending and receiving requests from an application to the

3 For RDMA, if the number of disjoint memory blocks exceeds the limit of NIC’s capability to encapsulate
all blocks in one RDMA work request, mRPC coalesces the data into a memory block before transmission.
This is because sending a single work request (even with a copy) is faster than sending multiple smaller work
requests on our hardware.
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mRPC service. The requests contain RPC descriptors, which reference arguments on the

shared memory heap. The mRPC service always copies the RPC descriptors applications

put in the sending queue to prevent TOCTOU attacks. mRPC provides two options to poll

the queues: 1) busy polling, and 2) eventfd-based adaptive polling. In busy polling, both

the application-side mRPC library and the mRPC service busy poll on their ends of the

queues. In the eventfd approach, the mRPC library and the mRPC service sends event

notifications after enqueuing to an empty queue. After receiving a notification, the queue is

drained (performing the necessary work) before subsequently waiting on future events. The

eventfd approach saves CPU cycles when queues are empty. Other alternative solutions

may involve dynamically scaling up (or down) the number of threads used to busy poll

by the mRPC service; however, we chose the eventfd approach for its simplicity. In our

evaluation, we use busy polling for RDMA and eventfd-based adaptive polling for TCP.

Memory management. We provide a memory allocator in the mRPC library for ap-

plications to directly allocate RPC data structures to be sent on a shared memory heap.

The allocator invokes the mRPC service to allocate shared memory regions on behalf of the

application (similar to how a standard heap manager calls mmap or sbrk to allocate memory

from an OS kernel). We need to use a specialized memory allocator for RPC messages (and

their arguments), since RPCs are shared between three entities: the application, the mRPC

service, and the NIC. A memory block is safe to be reclaimed only when it will no longer

be accessed by any entity.

We adopt a notification-based mechanism for memory management. On the sender

side, the outgoing messages are managed by the mRPC library within the application.

On the receiver side, the incoming messages are managed by the mRPC service. When

the application no longer accesses a memory block occupied by outgoing messages, the

memory block will not be reclaimed until the library receives a notification from mRPC

service that the corresponding messages are already sent successfully through the NIC

(similar to how zero-copy sockets work in Linux). Incoming messages are put in buffers
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on a separate read-only shared heap. The receiving buffers can be reclaimed when the

application finishes processing (e.g., when the RPC returns). To support reclamation of

receive buffers, the mRPC library notifies the mRPC service when specific messages are

no longer in use by the application. Notifications for multiple RPC messages are batched

to improve performance. If the receiver application code wishes to preserve or modify the

incoming data, it must make an explicit copy. Although this differs from traditional RPC

semantics, in our implementation of Masstree and DeathStarBench we found no examples

where the extra copy was necessary.

Cross-datapath policy engines. mRPC supports engines that operate over multiple

datapaths, which may span multiple applications. For instance, any global policy (e.g., QoS)

will need to operate over all datapaths (see §3.5). For this type of engine, we instantiate

replicas of the engine for each datapath that it applies to. Replicas can choose to either

communicate through shared state, which requires managing contention across runtimes,

or support runtime-local state that is contention-free.

3.4.3 Live Upgrades

Although our modular engine design for the mRPC service is similar to Snap [166]

and Click [127], we arrive at very different designs for upgrades. Click does not support

live upgrades, while Snap executes the upgraded process to run alongside the old process.

The old process serializes the engine states, transfers them to the new process, and the

new process restarts them. This means that even changing a single line of code within a

single Snap engine requires a complete restart for all Snap engines. This design philosophy

is fundamentally not compatible with mRPC, as we need to deal with new applications

arriving with different RPC schemas, and thus our upgrades are more frequent. In addition,

we want to avoid fate sharing for applications: changes to an application’s datapath should

not impact the performance of other applications. Ultimately, Snap is a network stack that

does not contain application-specific code, where as mRPC needs to be application-aware

for marshalling RPCs.
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We implement engines as plug-in modules that are dynamically loadable libraries. We

design a live upgrade method that supports upgrading, adding, or removing components of

the datapath without disrupting other datapaths.

Upgrading an engine. To upgrade one engine, mRPC first detaches the engine from its

runtime (preventing it from being scheduled). Next, mRPC destroys and deallocates the

old engine, but maintains the old engine’s state in memory; note that the engine is detached

from its queues and not running at this time. Afterwards, mRPC loads the new engine

and configures its send and receive queues. The new engine starts with the old engine’s

state. If there is a change in the data structures of the engine’s state, the upgraded engine

is responsible for transforming the state as necessary (which the engine developer must

implement). Note that this also applies to any shared state for cross-datapath engines.

The last step is for mRPC to attach the new engine to the runtime.

Changing the datapath. When an operator changes the datapath to add or remove an

engine, this process now involves the creation (or destruction) of queues and management

of in-flight RPCs. Changes that add an engine are straightforward, since it only involves

detaching and reconfiguring the queues between engines. Changes that remove an engine are

more complex, as some in-flight RPCs may be maintained in internal buffers; for example,

a rate limiter policy engine maintains an internal queue to ensure that the output queue

meets a configured rate. Engine developers are responsible for flushing such internal buffers

to the output queues when the engines are removed.

Multi-host upgrades or datapath changes. Some engine upgrades or datapath changes

that involve both the sender and the receiver hosts need to carefully manage in-flight RPCs

across hosts. For example, if we want to upgrade how mRPC uses RDMA, both the sender

and the receiver have to be upgraded. In this scenario, the operator has to develop an up-

grade plan that may involve upgrading an existing engine to some intermediate, backward-

compatible engine implementation. The plan also needs to contain the upgrade sequence,

e.g., upgrading the receiver side before the sender side. Our evaluation demonstrates such

28



a complex live upgrade, which optimizes the handling of many small RPC requests over

RDMA (see §3.7.3).

3.4.4 Security Considerations

We envision two deployment models for mRPC: (1) a cloud tenant uses mRPC to

manage its RPC workloads (similar to how sidecars are used today); (2) a cloud provider

uses mRPC to manage RPC workloads on behalf of tenants. In both models, there are two

different classes of principals: operators and applications. Operators are responsible for

configuring the hardware/virtual infrastructure, deploying the mRPC service, and setting

up policies that mRPC will enforce. Applications run on an operator’s infrastructure,

interacting with the mRPC service to invoke RPCs. Applications trust operators, along with

all privileged software (e.g., OS) and hardware that the operators provide; both applications

and operators trust our mRPC service and protocol compiler. In both deployment models,

applications are not trusted and may be malicious (e.g., attempt to circumvent network

policies).

In the first deployment model, mRPC service runs on top of a virtualized network that

is dedicated to the tenant. Running arbitrary policy and observability code inside the

mRPC service cannot attack other tenants’ traffic since inter-tenant isolation is provided

by the cloud provider. In the second deployment model, our current prototype does not

support running tenant-provided policy implementation inside mRPC service. How to

safely integrate tenant-provided policy implementation and a cloud provider’s own policy

implementation is a future work.

From the application point of view, we want to ensure that mRPC provides equiva-

lent security guarantees as compared to today’s RPC library and sidecar approach, which

we discuss in terms of: 1) dynamic binding and 2) policy enforcement. Our dynamic

binding approach involves the generation, compilation, and runtime loading of a shared li-

brary for (un)marshalling application RPCs. Given that the compiled code is based on the

application-provided RPC schema, this is a possible vector of attack. The mRPC schema
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compiler is trusted with a minimal interface: other than providing the RPC schema, appli-

cations have no control on the process of how the marshalling code is generated. We open

source our implementation of the compiler so that it can be publicly reviewed.

As for all of our RPC processing logic, policies are enforced over RPCs by operating

over their representations in shared memory control queues and data buffers. With a naive

shared memory implementation, this introduces a vector of attack by exploiting a time-of-

check to time-of-use (TOCTOU) attack; for instance, the application could modify the RPC

message after policy enforcement but before the transport engine handles it. In mRPC,

we address this by copying data into an mRPC-private heap prior to executing any policy

that operates over the content of an RPC (as opposed to metadata such as the length).

Similarly, received RPCs cannot be placed in shared memory until all policies have been

enforced, since otherwise applications could see received RPCs before policies have a chance

to drop (or modify) them. Shared memory regions are maintained by the mRPC service

on a per-application basis to provide isolation.

3.5 Advanced Manageability Features

mRPC’s architecture creates an opportunity for advanced manageability features such

as cross-application RPC scheduling. In this section, we present two such features that

we developed on our policy engine framework to demonstrate the broader utility of our

RPC-as-a-managed-service architecture.

Feature 1: Global RPC QoS. mRPC allows centralized RPC scheduling of cross-application

workloads based on a global view of current outstanding RPCs. For example, mRPC can

enforce a policy that prioritizes RPCs with earliest deadlines [260] across applications to

support latency SLO or prioritizes latency-sensitive workloads [308]. One challenge here is

that a naive implementation may attempt to apply the QoS policy for datapaths spread

over multiple runtimes (i.e., execution thread contexts). This would require the (replicated)

policy engines on each datapath to share the state on outstanding RPCs, and thus impose

synchronization overheads. Therefore, we adopt a similar strategy as used in the Linux
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kernel to apply the QoS policy on a per-runtime basis, which instead can use runtime-local

storage without the need for synchronization. In our implementation, we support a QoS

strategy that prioritizes small RPCs based on a configurable threshold size.

Feature 2: Avoiding RDMA performance anomalies. It is well known that RDMA

workloads may not fully utilize the capability of a specific RDMA NIC without fine-tuning,

and that particular traffic patterns can even cause performance anomalies [113, 128] (e.g.,

low RDMA throughput, pause frame storms). Previous work such as ScaleRPC [35] and

Flock [179] have proposed techniques to utilize the RNIC more efficiently. However, their

approaches are library-based and only work for single applications; therefore, they do not

handle scenarios in which the combination of multiple application workloads causes poor

RDMA performance. mRPC’s architecture enables us to have a global view of all RDMA

requests and to avoid such performance anomalies.

We implement a global RDMA scheduler inside the RDMA transport engine, which

translates RPC requests into RDMA messages and sends them to the RDMA NIC. In our

implementation, we focus on addressing the performance degradation from interspersed

small and large scatter-gather elements (which may be across RPCs as well as applications).

We fuse such elements together with an explicit copy with an upper bound of 16 KB for

the size of the fused element.

3.6 Implementation

mRPC is implemented in 32K lines of Rust: 3K lines for the protocol compiler, 6K for

the mRPC control plane, 12K for engine implementations, and 11K for the mRPC library.

The mRPC control plane is part of the mRPC service that loads/unloads engines.

The mRPC control plane is not live-upgradable. The mRPC library is linked into

applications and is thus also not live-upgradable. We do not envision the need to frequently

upgrade these components because they only implement the high-level, stable APIs, such

as shared memory queue communication and (un)loading engines.

Engine interface. Table 3.1 presents the essential API functions that all engines must
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Table 3.1: mRPC Engine Interface.
Operations
doWork(in:[Queue], out:[Queue])

Operate over one or more RPCs available on input queues.
decompose(out:[Queue]) Ñ State

Decompose the engine to its compositional states.
(Optionally output any buffered RPCs)

restore(State) Ñ Engine
Restore the engine from the previously decomposed state.

implement. Each engine represents some asynchronous computation that operates over

input and output queues via doWork, which is similar in nature to Rust’s Future. mRPC

uses a pool of runtime executors to drive the engines by calling doWork, where each runtime

executor corresponds to a kernel thread. We currently implement a simple scheduling

strategy inspired by Snap [166]: engines can be scheduled to a dedicated or shared runtime

on start. In addition, runtimes with no active engines will be put to slept and release

CPU cycles. The engines also implement APIs to support live upgrading: decompose and

restore. In decompose, the engine implementation is responsible for destructing the engine

and creating a representation of the final state of the engine in memory, returning a reference

to mRPC. mRPC invokes restore on the upgraded instance of the engine, passing in a

reference to the final state of the old engine. The developer is responsible for handling

backward compatibility across engine versions, similar to how application databases may

be upgraded across changes to their schemas.

Transport engines. We abstract reliable network communication of messages into trans-

port engines, which share similar design philosophy with Snap [166] and TAS [122]. We

currently implement two transport engines: RDMA and TCP. Our RDMA transport engine

is implemented based on OFED libibverbs 5.4, while our TCP transport engine is built on

Linux kernel’s TCP socket.

mRPC Library. Modern RPC libraries allow the user to specify the RPC data types and

service interface through a language-independent schema file (e.g., protobuf for gRPC,
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thrift for Apache Thrift). mRPC implements support for protobuf and adopts simi-

lar service definitions as gRPC, except for gRPC’s streaming API. mRPC also integrates

with Rust’s async/await ecosystem for ease of asynchronous programming in application

development.

To create an RPC service, the developer only needs to implement the functions declared

in the RPC schema. The dependent RPC data types are automatically generated and linked

with the application by the mRPC schema compiler. The mRPC library handles all the rest,

including task dispatching, thread management, and error handling. To allow applications

to directly allocate data in shared memory without changing the programming abstraction,

we implement a set of shared memory data structures that expose the same rich API as

Rust’s standard library. This is done by replacing the memory allocation of data structures

such as Vec and String with the shared memory heap allocator.

3.7 Evaluation

We evaluate mRPC using an on-premise testbed of servers with two 100 Gbps Mellanox

Connect-X5 RoCE NICs and two Intel 10-core Xeon Gold 5215 CPUs (running at 2.5 GHz

base frequency). The machines are connected via a 100 Gbps Mellanox SN2100 switch.

Unless specified otherwise, we keep a single in-flight RPC to evaluate latency. To benchmark

goodput and RPC rate, we let each client thread keep 128 concurrent RPCs on TCP and

32 concurrent RPCs on RDMA.

3.7.1 Microbenchmarks

We first evaluate mRPC’s performance through a set of microbenchmarks over two

machines, one for the client and the other for the server. The RPC request has a byte-array

argument, and the response is also a byte array. We adjust the RPC size by changing the

array length. RPC responses are an 8-byte array filled with random bytes. We compare

mRPC with two state-of-the-art RPC implementations, eRPC and gRPC (v1.48.0). We

deploy Envoy (v1.20) in HTTP mode to serve as a sidecar for gRPC. We use mRPC’s TCP

and RDMA backends to compare with gRPC and eRPC, respectively. There is no existing

33



sidecar that supports RDMA. To evaluate the performance of using a sidecar to control

eRPC traffic, we implement a single-thread sidecar proxy using the eRPC interface. We

keep applications running for 15 seconds to measure the result.

Small RPC latency. We evaluate mRPC’s latency by issuing 64-byte RPC requests over

a single connection. Table 3.2 shows the latency for small RPC requests. Note that since

the marshalling of small messages is fast on modern CPUs, the result in the table remains

stable even when the message size scales up to 1 KB. We use netperf and ib_read_lat to

measure raw round-trip latency.

mRPC achieves median latency of 32.8 µs for TCP and 7.6 µs for RDMA. Relative to

netperf (TCP) or a raw RDMA read, mRPC adds 11.8 or 5.1 µs to the round-trip latency.

This is the cost of the mRPC abstraction on top of the raw transport interface (e.g., socket,

verbs).

We also evaluate latency in the presence of sidecar proxies. The sidecars do not enforce

any policies, so we are only measuring the base overhead. Our results show that adding

sidecars substantially increases the RPC latency. On gRPC, adding Envoy sidecars more

than triples the median latency. The result is similar with eRPC. On mRPC, having a

NullPolicy engine (which simply forwards RPCs) in the mRPC service has almost no effect

on latency, increasing the median latency only by 300 ns.

Comparing the full solution (mRPC with policy versus gRPC/eRPC with proxy), mRPC

speeds up the median latency by 6.1ˆ (i.e., 33.4 µs against 203.4 µs) and the 99th percentile

tail latency by 5.8ˆ. On RDMA, mRPC speeds up eRPC by 1.3ˆ and 1.4ˆ in terms of

median and tail latency (respectively). This is because the communication between the

eRPC app and its proxy goes through the NIC, which triples the cost in the end-host driver

(including the PCIe latency). In contrast, mRPC’s architecture shortcuts this step with

shared memory.

In addition, to separate the performance gain from system implementation difference,

we evaluate the latency of mRPC with full gRPC-style marshalling (protobuf encoding and
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Table 3.2: Microbenchmark [Small RPC latency]: Round-trip RPC latencies for 64-byte
requests and 8-byte responses.

Transport Solution Median Latency (µs) P99 Latency (µs)

TCP

Netperf 21.0 32.0
gRPC 63.0 90.3
mRPC 32.8 38.7

gRPC+Envoy 203.4 251.1
mRPC+NullPolicy 33.4 43.3

mRPC+NullPolicy+HTTP+PB 49.8 61.9

RDMA

RDMA read 2.5 2.8
eRPC 3.6 4.1
mRPC 7.6 8.7

eRPC+Proxy 11.3 15.6
mRPC+NullPolicy 7.9 9.1

HTTP/2 framing) in the presence of NullPolicy engines as an ablation study. Under this

setting, compared with gRPC + Envoy, mRPC speeds up the latency by 4.1ˆ in terms

of both median and tail latency. We also observe that the mRPC framework does not

introduce significant overhead. Even with the cost of protobuf and HTTP/2 encoding,

mRPC still achieves slightly lower latency compared with standalone gRPC. In mRPC,

we can choose a customized marshalling format, because we know the other side is also

an mRPC service. In other cases, e.g., when interfacing with external traffic or dealing

with endianness differences, we can still apply full-gRPC style marshalling. When mRPC

is configured to use full-gRPC style marshalling, we only need to pay (un)marshalling costs

between mRPC services. For gRPC + Envoy, in addition to the (un)marshalling costs

between Envoy proxies, the communication between applications and Envoy proxies also

needs to pay this (un)marshalling cost. In the remaining evaluations, we will use mRPC’s

customized marshalling protocol. More results using gRPC-style marshalling are shown in

Appendix A.

Large RPC goodput. The client and server in our goodput test use a single application

thread. The left side of Figure 3.4 shows the result. From this point on, when we discuss

mRPC’s performance, we focus on the performance of mRPC that has at least a NullPolicy

engine in place to fairly compare with sidecar-based approaches.

mRPC speeds up gRPC + Envoy and eRPC + Proxy, by 3.1ˆ and 9.3ˆ, respec-
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FIGURE 3.4: Microbenchmark [Large RPC goodput]: Comparison of goodput for large
RPCs. Note that different solutions demand different amounts of CPU cores, so we also
normalized the goodput to their CPU utilization, as shown in the right figures. The error

bars show the 95% confidence interval, but they are too small to be visible.

tively, for 8KB RPC requests. mRPC is especially efficient for large RPCs4, for which

(un)marshalling takes a higher fraction of CPU cycles in the end-to-end RPC datapath.

Having a sidecar substantially hurts RPC goodput both for TCP and RDMA. In particular,

for RDMA, intra-host roundtrip traffic through the RNIC might contend with inter-host

traffic in the RNIC/PCIe bus, halving the available bandwidth for inter-host traffic. mRPC

even outperforms gRPC (without Envoy). mRPC is fundamentally more efficient in terms

of marshalling format: mRPC uses iovec and incurs no data movement. Appendix A

shows an ablation study that demonstrates that even if mRPC uses a full gRPC-style mar-

shalling engine, mRPC outperforms gRPC + Envoy due to a reduction in the number of

(un)marshalling steps.

CPU overheads. To understand the mRPC CPU overheads, we measure the per-core
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FIGURE 3.5: Microbenchmark [RPC rate and scalability]: Comparison of small RPC rate
and CPU scalability. The bars show the RPC rate.

goodput. The results are shown on the right side of Figure 3.4. mRPC speeds up gRPC

+ Envoy and eRPC + Proxy, by 3.8ˆ and 9.3ˆ, respectively. This means mRPC is much

more CPU-efficient than gRPC + Envoy and eRPC + Proxy. eRPC (without a proxy) is

quite efficient, but converges to mRPC’s efficiency as RPC size increases.

RPC rate and scalability. We evaluate mRPC’s small RPC rate and its multicore scal-

ability. We fix the RPC request size to 32 bytes and scale the number of client threads.

We use the same number of threads for the server as the client, and each client connects to

one server thread. Figure 3.5 shows the RPC rates when scaling from 1 to 8 user threads,

where the error bars show the 95% confidence interval. All the tested solutions scale well.

mRPC’s RPC rates scale by 5.1ˆ and 7.2ˆ, on TCP and RDMA, from a single thread to

8 threads. As a reference, gRPC scales by 4.3ˆ, gRPC + Envoy scales by 3.9ˆ, and eRPC

scales by 6.5ˆ. mRPC achieves 0.43 Mrps on TCP and 6.5 Mrps on RDMA with 8 threads.

gRPC + Envoy only has 0.09 Mrps, so mRPC outperforms it by 5ˆ. We do not evaluate

eRPC + proxy, because our eRPC proxy is only single-threaded. When we run eRPC +

proxy with a single thread, it achieves 0.51 Mrps. So even if eRPC + proxy scales linearly

to 8 threads, mRPC still outperforms it.

4 Standalone eRPC exhibits relatively lower goodput on RoCE than on Infiniband. According to the eRPC
paper [112], eRPC should achieve 75 Gbps on Infiniband for 8MB RPCs.

37



gRPC mRPC
0

25

50

75

100

R
P

C
 R

at
e 

(K
rp

s)

49

82

25

80
w/o Limit
w/ Limit

(a) Rate Limiting

gRPC mRPC
0

25

50

75

100

R
P

C
 R

at
e 

(K
rp

s)

50

84

13

79
w/o ACL
w/ ACL

(b) Access Control

FIGURE 3.6: Efficient Support for Network Policies. The RPC rates with and without
policy are compared.

3.7.2 Efficient Policy Enforcement

We use two network policies as examples to demonstrate mRPC’s efficient support for

RPC policies: (1) RPC rate limiting and (2) access control based on RPC arguments. RPC

rate limiting allows an operator to specify how many RPCs a client can send per second.

We implement rate limiting as an engine using the token bucket algorithm [266]. Our access

control policy inspects RPC arguments and drops RPCs based on a set of rules specified by

network operators. These two network policies differ greatly from traditional rate limiting

and access control, which only limit network bandwidth and can only operate on packet

headers.

We compare rate limit enforcement using an mRPC policy versus using Envoy’s rate

limiter on gRPC workloads. To evaluate the performance overheads, we set the limit to

infinity so that the actual RPC rate is never above the limit (allowing us to observe the

overheads). Figure 3.6a shows the RPC rate with and without the rate limits. The bars of

w/o Limit for gRPC show its throughput when the sidecar is bypassed. The error bars show

the 95% confidence interface. gRPC’s RPC rate drops immediately from 49K to 25K. This

is because having a sidecar proxy (Envoy) introduces substantial performance overheads.

For mRPC, the RPC rate stays the same at 82K. This is because having a policy introduces

minimal overheads. The extra policy only adds tens to hundreds of extra CPU instructions

on the RPC datapath.
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We evaluate access control on a hotel reservation application in DeathStarBench [62].

The service handles hotel reservation RPC requests, which include the customer’s name,

the check-in date, and other arguments. The service then returns a list of recommended

hotel names. We set the access control policy to filter RPCs based on the customerName

argument in the request. We use a synthetic workload containing 99% valid and 1% invalid

requests. We again compare our mRPC policy against using Envoy to filter gRPC requests.

We implement the Envoy policy using WebAssembly. gRPC’s rate drops from 50K to 13K.

This is because of the same sidecar overheads and now Envoy has to further parse the

packets to fetch the RPC arguments. On mRPC, the performance drop is much smaller,

from 84K to 79K. Note that, on mRPC, the performance overhead of introducing access

control is larger than rate limiting. For access control, the mRPC service has to copy the

relevant field (i.e., customerName) to the private heap to prevent TOCTOU attacks on the

sender side and has to copy the RPC from a private heap to the shared heap on the receiver

side.

3.7.3 Live Upgrade

We demonstrate mRPC’s ability to live upgrade using two scenarios.

Scenario 1. During our development of mRPC, we realized that using the RDMA NIC’s

scatter-gather list to send multiple arguments in a single RPC can significantly boost

mRPC’s performance. In this approach, even when an RPC contains arguments that

are scattered in virtual memory, we can send the RPC using a single RDMA operation

(ibv_post_send). We use these two versions of our RDMA transport engine to demon-

strate that mRPC enables such an upgrade without affecting running applications. Note

that all other evaluations already include this RDMA feature. This upgrade involves both

the client side’s mRPC service and the server side’s mRPC service, because it involves how

RDMA is used between machines (i.e., transport adapter engine). gRPC and eRPC cannot

support this type of live upgrade.

We run two applications (App A and App B). Both applications are sending 32-byte
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FIGURE 3.7: Live upgrade. The annotations in (a) indicate when A’s client and A and B’s
servers are upgraded; in (b) the specified rate and when the policy is removed.

RPCs, and the responses are 8 bytes. A and B share the mRPC service on the server

side. A’s and B’s RPC clients are on different machines. We keep 8 concurrent RPCs for

B, forcing it to send at a slower rate, while using 32 for A. We first upgrade the server

side to accept arguments as a scatter-gather list, and we then upgrade the client side of A.

Figure 3.7a shows the RPC rate of A and B. When the server side upgrades, we observe

a negligible effect on A’s and B’s rate. Neither A nor B needs recompilation or rebooting.

When A’s client side’s mRPC service is upgraded, A’s performance increases from 480K to

860K. B’s performance is not affected at all because B’s client side’s mRPC service is not

upgraded.

Scenario 2. Enforcing network policies has performance overheads, even when they do not

have any effect. For example, enforcing a rate limit of an extremely large throttle rate still

introduces performance overheads just for tracking the current rate using token buckets.

mRPC allows policies to be removed at runtime, without disrupting running applications.

We use the same rate limiting setup from §3.7.2 but on top of RDMA transport. Fig-

ure 3.7b shows the RPC rate. We start from not having the rate limit engine. We then

load the rate limit engine and set the throttled rate to 500K. The RPC rate immediately

becomes 500K. We then set the throttled rate to be infinite, and the rate becomes 840K.

After we detach the rate limit engine, the rate becomes 890K.
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FIGURE 3.8: DeathStarBench: Mean latency of in-app processing and network processing
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Takeaways. There are two overall takeaways from these experiments. First, mRPC al-

lows upgrades to the mRPC service without disrupting running applications. Second, live

upgrades allow for more flexible management of RPC services, which can be used to en-

able immediate performance improvements (without redeploying applications) or dynamic

configuration of policies.

3.7.4 Real Applications

We evaluate how the performance benefits of mRPC transform into end-to-end application-

level performance metrics.

DeathStarBench. We use the hotel reservation service from the DeathStarBench [62]

microservice benchmark suite. The reference benchmark is implemented in Go with gRPC

and Consul [40] (for service discovery). Our mRPC prototype currently only supports Rust

applications, and we thus port the application code to Rust for comparison. We use the

same open-source services such as memcached [168] and MongoDB [180].

We distribute the HTTP frontend and the microservices on four servers in our testbed.

The monolithic services (memcached, MongoDB) are co-located with the microservices that

depend on them. We use a single thread for each of the microservices and the frontend.

Further, we deploy an Envoy proxy as a sidecar on each of the servers (with no active

policy). The provided workload generator [62] is used to submit HTTP requests to the

frontend. For a fair comparison, we also implemented a Rust version of the benchmark
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Table 3.3: Masstree analytics: Latency and the achieved throughput for GET operations.
MOPS is Million Operations Per Second.

Median Latency P99 Latency Throughput

eRPC 16.8 µs 21.7 µs 8.7 MOPS
mRPC 22.5 µs 33.1 µs 7.0 MOPS

with Tonic [272], which is the de facto implementation of gRPC in Rust. We deploy the

mRPC and Tonic implementations on bare metal, while the reference Go suite runs in

Docker containers with a host network (which introduces negligible performance overheads

compared to using bare metal [316]). All three solutions are based on TCP. We issue 20

requests per second for 250 seconds and record the latency of each request, breaking it down

into the in-application processing time and network processing time for each microservice

involved. In our evaluation, the dynamic bindings of the user applications are already

cached in mRPC service, so the time to generate the bindings is not included in the result.

Figure 3.8 shows the latency breakdown. Note that the frontend latency represents the

complete end-to-end latency. First, we validate that our own implementation of DeathStar-

Bench on Rust is a faithful re-implementation. We can see that the original Go implemen-

tation and our Rust implementation have similar latency. Moreover, the amount of latency

spent in gRPC is similar. Second, mRPC with a null policy outperforms by 2.5ˆ gRPC

with a sidecar proxy in average end-to-end latency. Figure B contains more details about

the tail latency and the scenario without a sidecar.

Masstree analytics. We also evaluate the performance of Masstree [164], an in-memory

key-value store, over both mRPC and eRPC [112] using RDMA. We follow the exact same

workload setup used in eRPC, which contains 99% I/O-bounded point GET request and

1% CPU-bounded range SCAN request. We run the Masstree server on one machine and

run the client on another machine. Both the server and the client use 10 threads, with

each client thread using 16 concurrent requests. The test runs for 60 seconds. The result

in Table 3.3 shows that eRPC outperforms mRPC, which makes sense since eRPC is a

well-designed library implementation that is focused on high performance. mRPC enables
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Table 3.4: Global QoS: Performance of latency- and bandwidth-sensitive applications with
and without a global QoS policy.

Latency App B/W App

P95 Latency P99 Latency Bandwidth

w/o QoS 45.1 µs 54.6 µs 22.2 Gbps
w/ QoS 19.5 µs 21.8 µs 22.0 Gbps

many other manageability features in exchange for a slight reduction in performance. In

this case, using mRPC instead of eRPC means that median latency increases by 34% and

throughput reduces by 20%.

3.7.5 Benefits of Advanced Manageability Features

Next, we demonstrate the performance benefits of having centralized RPC management,

through two advanced manageability features that we developed (see §3.5). We use synthetic

workloads to test the advanced manageability features.

Global RPC QoS. We enable our cross-application QoS policy that reorders requests from

multiple applications and prioritizes small RPC quests. We set up two applications and

pin them to the same mRPC runtime. One application is latency-sensitive, sending 32-byte

RPC requests with a single RPC in-flight; the other is bandwidth-sensitive, sending 32 KB

requests with 64 concurrent RPCs. We measure the tail latency for the latency-sensitive

application and the utilized bandwidth of the bandwidth-sensitive one.

Table 3.4 shows the result. Without the QoS policy, the bandwidth-sensitive application

has a high bandwidth utilization; however, the latency-sensitive application suffers from a

high tail latency. With the QoS policy in place, the small requests from the latency-sensitive

application get higher priority and are sent first, improving P99 latency from 54.6 µs to

21.8 µs. Since small RPC requests consume negligible bandwidth, it barely affects the

bandwidth-sensitive application (less than a 1% bandwidth drop).

RDMA Scheduler. Our RDMA scheduler batches small RPC requests into (at most)

16KB messages and sends requests using a single RMDA operation to reduce the load on

43



InceptionV3 EfficientNet MobileNet
0

200

400

600

M
ea

n 
La

te
nc

y 
(μ

s) 585
456

243
380

246 181

w/o Scheduler
w/ Scheduler
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error bars show the 95% confidence interval.

the RDMA NIC. Our synthetic workload is based on BytePS [109], which uses RDMA for

distributed deep learning. To synchronize a tensor to/from a server, BytePS prepends an

8-byte key and appends a 4-byte length to describe the tensor. The three disjoint memory

blocks are placed in a scatter-gather list and submitted to the NIC, resulting in a small-large-

small message pattern that triggers a performance anomaly [128]. This message pattern is

quite common in real applications, as programs often need to describe a large payload with

a small piece of metadata. We emulate BytePS’s RPC request pattern and generate RPCs

from three widely-used models: MobileNet, EfficientNetB0, and InceptionV3 [85, 265, 264].

Each RPC call consists of an 8-byte key, a payload of tensor, and a 4-byte length. We use

a single thread to make RPCs. Figure 3.9 shows the average RPC latency. The RDMA

scheduler provides 30-90% latency improvement. This improvement differs for different

neural networks, because of different RDMA message patterns.

3.8 Related Work

Integrating collective communication into the network. There are several prior efforts in

integrating collective communcation into the network. ATP [133], SwitchML [244], and

PANAMA [65] propose offloading AllReduce operations to in-network hardware to enable

multi-tenant distributed machine learning. The key difference is that MCCS targets at the

public cloud environment, where these works all require tenant applications to be trusted.

In these works, a misbehaving or malicious application can circumvent the cloud provider
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designed collective communication strategy, and this will require well-behaving tenants to

adjust their strategies accordingly. In MCCS, all the collective operations are managed

through the MCCS daemon. Another difference is that MCCS’s performance gain is not

from in-network gradient aggregation but from dynamic adjustment to collective commu-

nication strategy.

Exposing public cloud network information for tenants to pick collective communication

strategies. A separate line of work focuses on letting tenant acquire information about the

physical network of the cloud provider in order to pick collective communication strategies.

NetHint [33] presents an approach that the cloud provider periodically exposes a hint, con-

taining a subset of the physical network topology and link utilization, to help the tenant pick

collective communication strategy. However, a cloud provider may have security and pri-

vacy concerns of exposing their physical network topology and network utilization to cloud

tenants to prevent adoption. PLink [161] and Choreo [132] let tenant applications measure

their VM-level network bandwidth in order to pick collective communication strategies or

decide on job scheduling. These approaches are not guaranteed to be accurate, because re-

verse engineering the network configurations from a single tenant’s observation is generally

hard. Further, in both approaches, tenants are making their own decisions on collective

communication. In comparison, MCCS controls all tenants’ collective communication.

Choosing collective communication strategies based on network topology and bandwidth.

Optimizing collective communication strategies for particular network topology and band-

width configuration is a standard task for developers running large-scale workloads on

supercomputers [46, 119]. For machine learning workloads, several prior works have fo-

cused on improving collective performance [208, 282, 249]. These works all focus on the

single-tenant scenarios. Our work focuses on the multi-tenant public cloud setting. We

need to deal with challenges of dynamically changing collective communication strategies,

which is not a concern in single-tenant scenarios.

Quality of Service (QoS) in a multi-tenant network. How to let multiple tenants share

a cloud network with QoS guarantees is an old topic. A cloud datacenter network often

45



uses a combination of congestion control [229, 4, 315, 79], load balancing [3, 121, 302,

198], and various types of rate limiting techniques [12, 106, 131, 136, 216, 5]. These works

focuses on how to share bandwidth given a set of point-to-point network demand. The

optimizations mRPC addresses is on having multiple collective communication operations

share the bandwidth by selecting collective communication strategies (e.g., the ordering

of nodes in an AllReduce ring for each tenant), which is a different and complementary

problem.

3.9 Summary

Remote procedure call has become the de facto abstraction for building distributed ap-

plications in datacenters. The increasing demand for manageability makes today’s RPC

libraries inadequate. Inserting a sidecar proxy into the network datapath allows for man-

ageability but slows down RPC substantially due to redundant marshalling and unmar-

shalling. We present mRPC, a novel architecture to implement RPC as a managed service

to achieve both high performance and manageability. mRPC eliminates the redundant

marshalling overhead by applying policy to RPC data before marshalling and only copy-

ing data when necessary for security. This new architecture enables live upgrade of RPC

processing logic and new RPC scheduling and transport methods to improve performance.

We have performed extensive evaluations through a set of micro-benchmarks and two real

applications to demonstrate that mRPC enables a unique combination of high performance,

policy flexibility, security, and application-level availability. Our source code is available at

https://github.com/phoenix-dataplane/phoenix.
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4. MCCS: A Service-based Approach to Collective
Communication for Multi-Tenant Cloud

In Chapter 3, we show that how we rearhcitect RPCs as a managed system service,

instead of using the library and sidecar based solution, to efficiently enforce policies while

enabling new manageability features. Next, we move to collective communication. We

find that existing library based approach to implement collective communication is ill-

suited in a multi-tenant cloud environment. They miss many performance optimization

opportunities due to the lack of information of both network topology and other tenants.

In this chapter, we propose MCCS to address this issue, our alternative architecture where

collective communication abstractions are directly provided and implemented by the cloud

provider.
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4.1 Introduction

Today, distributed workloads have increasingly moved to the cloud for the ease of in-

frastructure management and resource pooling. In a public cloud environment, however,

existing collective communication libraries have shown several shortcomings. First, choos-

ing the most efficient algorithm requires knowledge of the physical network topology and

link utilization, which are not available to cloud tenants. As a consequence, this may lead

to sub-optimal decisions between ring- and tree-based algorithms and their configurations

(e.g., participant ordering in a ring). Second, current libraries (e.g., NCCL) decide the

exact strategy at initialization time and will not change the chosen strategy once the job

starts. While this is fine for single-tenant settings (e.g., supercomputers), it is not ideal for

multi-tenant settings because the best choice of algorithm depends on the other tenants’

communication patterns. Finally, current libraries often make optimization choices in a

manner that is agnostic to the underlying physical network configuration; however, these

optimizations frequently rely on assumptions regarding the configuration. For instance,

NCCL instantiates multiple TCP/RDMA connections between nodes to improve through-

put by exploiting multiple network paths in parallel even though the connections may be

routed via the same (shared) physical path.

In this chapter, we propose a new approach that more tightly integrates collective

communication with the cloud network instead of the applications. We call our approach

MCCS, which is short for Managed Collective Communication as a Service. MCCS ex-

poses traditional collective communication abstractions to applications, yet decouples the

implementation from the applications themselves to extend more control to the cloud in-

frastructure provider. With MCCS, tenants are no longer responsible for implementing

collectives, which often relied on information unavailable to the tenants themselves (e.g.,

physical configuration, properties of other tenants’ applications). Meanwhile, MCCS ex-

tends significant flexibility to the cloud provider to support a variety of benefits: First,

the provider can easily adopt custom, proprietary collective communication approaches
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without the need for changing existing user applications. Second, the provider can enforce

fine-grained quality of service (QoS) policies at the level of collective operations. Third,

the provider is no longer forced to choose between providing strong performance or the

confidentiality of their proprietary infrastructure.

Achieving our goals for MCCS requires us to address several key challenges. First,

we need to resolve the tension between decoupling collectives from the application while

maintaining the existing interface. Second, collective communication is a group operation

that requires synchronization among a number of components (e.g., application, service,

hardware). Third, we need to support policies driven by the changing status of the cluster

which can improve performance at both the logical-level (e.g., ring strategy) and physical-

level (e.g., flow scheduling).

We implement a prototype for MCCS that targets applications using GPU-based com-

putation and provide a lightweight shim library that connects applications with our sys-

tem service. Our system can easily integrate existing collective algorithms implemented

in NCCL through their CUDA kernels, as well as support more-customized algorithms.

We evaluate the performance of MCCS using a small scale testbed and large scale simu-

lations. Our testbed results have shown that MCCS consistently outperforms NCCL by

up to 2.4x in terms of algorithm bandwidth, and improves training workloads in a multi-

tenant improves by up to 34%. Our simulation results have demonstrated that MCCS

enables an overall speed-up of 3.4x on a large-scale cluster. Our source code is available at

https://github.com/phoenix-dataplane/MCCS/.

In this chapter, we make the following contributions:

• A new architecture for supporting collective communication in multi-tenant scenarios,

shifting control from applications to the cloud network to improve performance.

• An approach to enable dynamic reconfiguration of collective implementations at run-

time, which we leverage to demonstrate strong policies such as collaborative transfer

scheduling across applications.

• A prototype implementation of MCCS targeting distributed machine learning work-

49

https://github.com/phoenix-dataplane/MCCS/


loads that is conceptually a drop-in replacement for NCCL, along with an evaluation

that demonstrates the benefits via real-world traces on a testbed deployment and

simulator.

4.2 Using Collective Communication Libraries in a Multi-Tenant
Network?

In a multi-tenant datacenter network, traditional collective communication libraries face

several challenges. Firstly, cloud networks often provide a simplified, black-box abstraction,

where all tenant instances are connected through a big, virtual switch. However, these in-

stances may actually be distributed across multiple physical racks, which are interconnected

to upper-layer switches through multiple links, sometimes with oversubscription.

This lack of visibility into the physical topology can lead to suboptimal collective algo-

rithm selection or configuration. For instance, in a ring-based collective algorithms where

data transfer follows worker ranks (which are assigned by users), Without topology in-

formation, randomly assign ranks to workers in different racks could lead to the ring to

cross racks back and forth multiple times, causing substantially more inter-rack traffic than

necessary.

Figure 4.2 illustrates the network overhead introduced by non-optimal ring configuration

with respect to job sizes. We have a production trace collected at one of the largest

social network company, whose production cluster uses a spine-leaf architecture. Each rack

connects two hosts, each with 8 GPUs and 8 NICs. We measure a job’s network overhead

using cross-rack ratio, where is the number of cross-rack flows of the collective ring used by

the job, normalized to that of an optimal ring configuration. A ring configuration in the

worst case introduces 2x cross-rack flows compared to the optimal one. The performance

degradation would only grow as more hosts are placed under a rack. We simulate a cluster

with the same scale as the company’s and computes the expected cross-rack ratios with

different job sizes, if ring ordering is randomly chosen and we assume jobs are perfectly

packed to hosts. The worst case overhead becomes 4x in this scenario. We also find that

the overhead grows with respect to the job size.
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FIGURE 4.2: Number of cross rack flows normalized to optimal ring from both production
trace and simulation.

Further, in today’s multi-path datacenters, the most commonly used network load bal-

ancing strategy is Equal-Cost Multi-Path (ECMP). However, ECMP may not efficiently

handle multiple flows from a ring-based collective operation, potentially leading to conges-

tion on a single physical path and reduced throughput.

NetHint [33] suggests letting a cloud provider expose its network topology and link uti-

lization. This transparency will potentially enable a collective communication library adjust

its choices of collective communication at runtime. However, this approach raises security

and privacy concerns, because a cloud provider has incentive to maintain the confidentiality

of its network topology and link utilization.

In summary, cloud tenants face a significant challenge in selecting an optimal collective

communication algorithm due to the lack of visibility into the physical network’s structure.

Providing tenants with access to this information could introduce security risks for cloud

providers, as it exposes sensitive details of their infrastructure. A viable approach appears to

be for the cloud provider to assume responsibility for choosing the collective communication

strategy on behalf of the tenant. Our system, MCCS, explores this approach.

4.3 Overview

MCCS is a new design of collective communication for the multi-tenant cloud setting.

We have following goals. First, a cloud provider can decide the collective communication

51



strategy for a cloud tenants. The cloud tenant calls a higher-level collective communication

interface like AllReduce, instead of instantiating point-to-point data transfer by a collective

communication library. Second, the tenant has no knowledge of what algorithm is chosen

and does not know the cloud’s network topology, link utilization, etc. The cloud provider

hides all these sensitive information inside a cloud service. Third, the cloud provider can

change the collective communication strategy without interrupting the running tenant to

accommodate changes in the multi-tenant network (e.g., to accommodate a new tenant’s

workload, to leverage more available bandwidth as other tenants leave the network). Fi-

nally, our new design will enable the cloud provider to do other optimizations (e.g., joint

optimization of collective communication and flow scheduling, having multiple tenants’

workloads use the bandwidth in an interleaved fashion).

MCCS, realizes collective communication as a cloud service instead of an application

library. At the same time, MCCS maintains a similar interface as traditional collective

communication libraries such as NCCL. Figure 4.1 presents an overview of the various

components of MCCS and its architecture different compared to traditional collective com-

munication libraries. MCCS service runs as a trusted, user-space process with access to all

GPUs and NICs on the host. User applications on the host only have access to one or more

GPUs allocated to the application. Applications are compiled with MCCS shim library,

which communicates with MCCS service using shared host and GPU memory. MCCS ser-

vice is controlled by the cloud provider, and applications can only access it through its

collective communication APIs.

MCCS service issues collective communication operations for GPU buffers on behalf of

the cloud tenant. MCCS service decides the collective communication strategy and can

change the strategy at runtime. Because MCCS service is controlled by a cloud provider,

for every flow in the collective communication, MCCS service can also decide its network

path in the cloud network using source routing or other path control schemes. Further,

MCCS service can enforce QoS policies by controlling flow paths and the timing of collective

communication operation execution.
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4.4 Design

In this section, we break down and discuss the design of MCCS in three parts. First,

we look at how MCCS meets the existing collective API while decoupling collectives from

the application. Next, we discuss how MCCS supports the data path for collective com-

munication with support for runtime reconfigurability. Finally, we present our solution to

decouple policy from mechanism and enable flexible management of collectives. While our

design is agnostic to any particular collective communication implementation, we focus on

the NCCL throughout this section; other GPU-based collective communication libraries

such as RCCL [234] and oneCCL [199] maintain similar semantics and terminologies as

NCCL.

4.4.1 Collective Interface

To support collective communication as a service, MCCS needs to: 1) provide an in-

terface to applications for invoking collectives, and 2) enable synchronization between ap-

plication computation and collective operations. One goal that constrains our design is a

desire to maintain as close to the same interface as existing libraries, like NCCL, so that

MCCS could act as a drop-in replacement.

NCCL provides APIs that build on core CUDA primitives for applications to issue

collectives. A CUDA stream is similar to the notion of a thread, allowing applications

to enqueue a sequence of operations (e.g., kernels) to be executed in-order by the GPU.

An application can use multiple threads to express concurrency between operations by

enqueuing them on different streams. When invoking a NCCL collective API, developers

specify the stream that the collective will be enqueued on; this is used to capture the data

dependency between a collective and the (prior) computations that generate the data for

the collective to operate over.

To realize our design for MCCS, we need to address two challenges that relate to the

inherent isolation between applications that leverage CUDA. First, similar to host memory,

GPU memory between different processes is isolated by default. How can MCCS service
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GPU buffers of applications and implement collectives on them? Second, due to the fact

that CUDA streams are limited within a single process, how can MCCS service’s APIs

maintain the same thread semantics for the application’s CUDA calls, as respected by

NCCL?

We will discuss each of these in turn.

Memory Management. We address the memory management challenge by choosing to

redirect control over GPU memory allocations and deallocations to the MCCS service. Our

shim library provides APIs that applications can invoke directly to allocate memory that

will be accessible to both the application and the MCCS service; the application can use

the existing CUDA APIs to manage private buffers that are not directly used as part of

collective operations. Alternatively, to minimize the changes to existing applications, we

also support the redirection of all allocations to the MCCS service.

The MCCS shim issues an allocation request to the MCCS service over the shared mem-

ory command queue between the application and the service. A dedicated front-end engine

for the given application will handle the request by internally allocating memory on the

specified GPU device and obtain an inter-process memory handle to share with the appli-

cation. The MCCS shim receives and opens this handle to obtain the underlying device

pointer to the allocated memory, which it returns to the application. The application can

then use these pointers freely for invoking compute operations, while for collective opera-

tions, MCCS shim passes an identifier for the memory allocation and an offset to MCCS

service. The service will check whether the data buffer user passes is within a valid allocation

before performing the operation. This process follows similarly for deallocation requests –

the shim is responsible for closing the inter-process memory handle before forwarding the

request to the MCCS service.

Synchronization. We address the synchronization challenge by designing an event-based

mechanism that maintains the traditional semantics of CUDA streams, which enables the

sequential ordering of dependent compute and collective operations. Since CUDA streams

belong to a single application and cannot be shared (unlike GPU memory via inter-process
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handles), we need an alternative approach for MCCS. We leverage the CUDA event prim-

itive, which provides the ability to enqueue a stream operation that blocks waiting on the

notification of a event that was enqueued on a (different) stream. Unlike streams, events

can be shared via inter-process handles.

MCCS addresses synchronization at the level of communicators, a standard abstraction

used in collective communication libraries (e.g., NCCL) to specify a subset of n nodes, each

assigned a unique rank in [0, n), to take part in collective operations. While an application

may use an arbitrary set of streams for managing its computation and collective opera-

tions, the MCCS service maintains one stream per communicator. When an application

issues a collective operation for a given communicator, the MCCS service enqueues the

communication kernels that implement the collective request on the associated stream.

To enable communication kernels on MCCS-managed streams to wait for compute ker-

nels on application-managed streams to finish (and vice-versa), we need to introduce event

management operations into the MCCS shim. When a communicator is created, the MCCS

service also creates a corresponding event object and obtains an inter-process event handle

that it returns to the MCCS shim (along with the communicator handle). The MCCS shim

will use this event to enqueue an operation on the application’s stream to block waiting for

the collective to finish prior to executing any subsequent operations. Likewise, the MCCS

shim also creates an event object for each application stream to share with the MCCS ser-

vice. Instead of hooking directly into CUDA’s stream management API, the MCCS shim

creates events in an on-demand fashion whenever a new application stream is used for in-

voking a collective operation. The MCCS shim shares an inter-process event handle along

with a stream identifier with the MCCS service, which it uses to enqueue an operation on

the internal stream for the communicator to block waiting for any computation to finish

prior to executing the subsequent communication kernel.

Now, we have developed an approach for decoupling the collective communication from

the application while still providing the same interface from our MCCS service. Next, we

will explore how MCCS actually implements the communication that underlies collective
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operations while enabling more manageability as compared to existing approaches.

4.4.2 Collective Communication

To support dynamic reconfiguration of the data path subject to policies, we need to

decouple the data path setup from the communicator’s initialization. In NCCL, most of

the work that configures the data path takes place when a communicator is created by an

application, where NCCL first attempts to detect the intra-host topology (e.g., NVLink

between GPUs) to figure out how to connect all of the intra-host GPUs, while also identify-

ing the best NIC to use. After the intra-host topology is decided, each rank communicates

with the root (i.e., rank 0) to form an AllGather TCP/IP-based ring for exchanging control

information. At this point, NCCL can set up the underlying algorithm for implementing

collective operations by constructing rings and trees, which it uses to establish peer-to-peer

connections between nodes (e.g., consecutive ranks in the ring).

NCCL is mainly designed to run on infrastructure that is tightly controlled by the user

(i.e., application developer), focusing only on optimizing the intra-host strategy while leav-

ing the optimization of inter-host strategy to users. In particular, NCCL simply connects

inter-host rings and trees according to the ordering of user-specified ranks when establishing

the communicator; therefore, users must carefully design the GPU-to-rank mapping, which

requires expert knowledge of the cluster topology (and is often error prone). In multi-

tenant settings for public cloud, where the users and infrastructure provider are not the

same principal, this becomes problematic. However, even intra-host optimization presents

issues in public cloud settings as well due to virtualization. NCCL can potentially fail to

optimize intra-host strategy because it relies on sysfs information to discover the PCIe

topology of GPUs and NICs. Typically, modern virtualization approaches may hide such

information from tenants (and thus from tenant-controlled collective libraries like NCCL).

This challenge has been noted in other recent work on collective communication algorithms

such as TACCL [249].

By decoupling the implementation of collectives from the applications, we are uniquely

56



positioned to transform these prior challenges into opportunities for MCCS. First, we can

leverage proprietary (and thus often confidential) topology information within the context

of the MCCS service without revealing such information to the applications. This involves

architectural challenges in terms of running collective communication strategies outside the

tenant application’s control and observability. Second, we can enable dynamic reconfigu-

ration of collective strategies in response to changes in the cloud network (or the set of

multi-tenant applications). This involves addressing a key challenge for enabling reconfig-

uration (e.g., at the level of ring orderings) that simultaneously achieves high-performance

and ensures synchronization across the participating nodes within a communicator. We

will discuss each of these in turn.

Multi-Tenant and Topology-Aware Architecture. For MCCS, we need to develop a new

architecture to simultaneously support multiple applications sharing cluster, or even indi-

vidual host, resources while also being able to exploit low-level network information (e.g.,

physical topology). Given that NCCL is focused on a single application, the implementa-

tion of collective communication for communicators consists of a “transport agent”, which

is responsible for managing the sending/receiving of inter-host collective communication

traffic via available NICs based on GPU data buffers. We choose to decompose the role of

the MCCS service into two main engines 1: 1) a proxy engine, and 2) a transport engine.

The proxy engine is responsible for bridging the gap between high-level communicators

and low-level resources. For each GPU on a given host, MCCS initializes a single proxy

engine that handles all communicators which include that GPU in their ranks. When

a collective is issued, the proxy engine manages the higher-level collective strategies and

network configurations for how the collective communication will be implemented. For

instance, this enables MCCS to optimize how inter- and intra-host rings are connected and

ordered for improve resource utilization. Additionally, MCCS enables the incorporation

of various collective strategies optimized for specific topologies, such as those proposed

1 We use the term “engine” to refer to a general wrapper around functions that can asynchronously operate
over inputs to generate some outputs.
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in recent research [249, 27, 203] or even proprietary strategies developed in-house by the

provider. In all cases where communication takes place over intra-host communication

channels (e.g., NVLink, host shared memory buffer), the proxy engine manages the setup

and use of those channels directly.

For all inter-host communication, the proxy engine offloads the management to the

transport engine. While conceptually similar to the transport agent in NCCL, the trans-

port engine in the MCCS service is responsible for multiple applications simultaneously.

Additionally, the transport engine is responsible for providing the underlying mechanisms

for scheduling flows on network paths using existing path control techniques (e.g., source

routing, policy-based routing). There may be one or more transport engines associated

with each GPU to support more communication parallelism.

Dynamic Reconfiguration. The MCCS service exposes support for dynamic reconfiguration

via a command that is made available to the provider (not the applications). A key goal of

our design is to ensure that the performance overhead for performing a reconfiguration is low

(since this otherwise reduces the benefit from implementing smart policies) and that there is

zero (or negligible) performance overhead for collective operations when no reconfiguration

is issued. At a high-level, this motivates our choice to support reconfiguration at the

granularity of collective operations. Reconfiguration should be a coarse-grained scheduling

decision in practice, reacting to events such as link utilization increasing due to traffic that is

outside the scope of collectives managed by MCCS (e.g., fetching training data, background

flows).

While it is straightforward for all nodes to agree on a configuration at initialization time,

which necessarily takes place before collectives, this is much more challenging when imple-

menting reconfigurations between collective operations. For an illustration of this, consider

the example shown in Figure 4.3. Here we assume an application created a communicator

consisting of three GPUs and that it issues a series of AllReduce (AR) collectives for that

communicator. We differentiate between the launch of a collective, which shows the ring

configuration, and the subsequent completion of a collective. At some point, a reconfigura-
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reconfigurations (left) and the MCCS protocol to address this (right).

tion request (Req) is sent to each of the MCCS service instances running on different nodes;

however, due to arbitrary network and processing delays, it is possible for the command

to be received and processed at different times. Without appropriate synchronization, this

could lead to correctness issues (shown on the left) in which rank 0 executes AR1 from the

perspective of the previous ring ordering, while ranks 1 and 2 perform updates (Updt) to

handle the reconfiguration request prior to AR1. We need to address this problem without

requiring expensive synchronization operations on the fast path (i.e., between collectives

when no reconfiguration takes place).

Our solution is to leverage the per-communicator control ring as the basis to construct

an efficient barrier synchronization mechanism. Each proxy maintains a sequence number

for the collectives over time, which inherently matches across all nodes in a communica-

tor because each collective involves every node. After receiving a reconfiguration request,

each proxy enqueues all subsequent collectives prior to issuing an AllGather (AG) collective

on the control ring to exchange the sequence number corresponding to the last collective
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launched. Local updates will not be completed until the AllGather completes, which will

provide all nodes with the sequence numbers for every other node; computing the maximum

sequence number enables nodes to identify which collectives should precede any reconfigu-

ration update (i.e., collective sequence number is less than or equal to the maximum).

Looking back at Figure 4.3, we see on the right how this synchronization prevents

this correctness issue in this example. When the proxies for ranks 1 and 2 receive the

reconfiguration request (Req), they issue the AllGather operation with their data containing

0 for the latest collective (AR0) that was launched. Later, when the proxy for rank 0

receives the reconfiguration request, it also issues the AllGather operation; however, since

it already launched AR1, its data contains 1 for the latest collective. At this point, the

AllGather operation completes, which allows the proxies for all ranks to determine that

the maximum sequence number is 1; for ranks 2 and 3, this means that they should issue

the queued AR1 collective prior to updating the configuration. The updated ring ordering

will be used in all future collectives until a another future reconfiguration request is issued.

To update a configuration, the proxy engines will interact with the transport engines to

close all existing peer-to-peer connections for the communicator and clean up corresponding

resources. Afterwards, the new connections are instantiated based on the chosen strategy

(e.g., rank ordering within a ring), similar to what is performed at the time of initialization.

In analyzing the performance implications of this design, we can make two observations.

First, issuing a reconfiguration request can introduce some performance overhead, since

collectives will be stalled until the AllGather for the reconfiguration is complete (i.e., until

the last proxy receives and handles the request). Additionally, there is some overhead in

tearing down and establishing new peer-to-peer connections. As we will demonstrate in

the evaluation, the performance overhead for handling reconfigurations is rather small, and

enables significant performance benefits from smart policies. Second, in the absence of a

reconfiguration request, there is no performance overhead. Note that the proxy for rank 0

is able to launch the AR1 collective before even being aware that the other ranks received

a reconfiguration request – any synchronization via the control channel (or blocking) only
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occurs after a request is received.

At this point, we have the ability for applications to issue collectives and for the MCCS

service to implement them while supporting reconfigurations at runtime while taking into

account low-level topology information. Next, we will explore how MCCS enables flexible

and expressive management according to provider-defined policies that build on top of the

reconfiguration mechanisms that we just discussed.

4.4.3 Enabling Manageability

One of our key goals in MCCS is to cleanly decouple policy from mechanism. The

design of our proxy and transport engines within the MCCS service enables management

of both the control and data paths for collective communication. On the control path, the

MCCS service can support different collective strategies for various applications as well as

control network resource allocation (e.g., NICs per application, network routing). On the

data path, the MCCS service can support fine-grained control of communication through

augmentation of the transport engine to control the conditions for sending network traffic.

Our architecture enables this through dynamic loading of provider-supplied logic that can

handle policy decisions determined by an external controller.

To enable an external controller (e.g., centralized manager) to schedule the collective

communication across all applications on the cluster, the MCCS service needs to provide an

interface for exposing necessary information. For each application, this information is based

on the set of active communicators, including the set of GPUs (and hosts) that make up the

ranks within the communicator, and the current configuration of collective strategy (e.g.,

ring configuration) and network resources (e.g., flow mapping). Additionally, the MCCS

service can perform fine-grained tracing of collectives issued by applications to determine

properties of their computation and communication patterns. The controller consumes this

data to make a policy decision.

Next, we look at several concrete examples of scheduling and quality-of-service (QoS)

policies, which will also be used in our evaluation of MCCS. While these examples are admit-
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tedly straightforward, they effectively illustrate MCCS’s system capabilities beyond what

today’s collective communication library can offer. MCCS can also incorporate topology-

optimized collective algorithms from MSCCL [249, 27], while they only apply to a single-

tenant environment.

Topology-aware collaborative scheduling. We explore the following two heuristics to enable

the joint optimization of the algorithmic strategy at the collective level and flow assignment

at the network layer.

Example #1: Locality-aware ring configuration. The ordering of how the hosts are

chained in the ring collective algorithm directly dictates the overall communication pattern.

If many flows have to go through links above the leaf level (assuming a Clos network

topology), severe congestion could occur due to over-subscription. Hence, our goal is to

minimize the number of cross-rack / cross-pod flows. We apply a greedy algorithm to

configure the ring ordering for each communicator (application). We group the participant

hosts by their locality (e.g., under the same rack, under the same pod) and then connect

them in a sequential order. The algorithm takes the set of participant GPUs for each

communicator obtained by MCCS service management APIs, and sends an optimized ring

ordering back to MCCS service.

Example #2: Best-fit fair flow assignment (FFA). Once the ring configuration for all

applications are optimized, the communication patterns between hosts and hence the set

of flows can be determined. Still, using the standard ECMP approach to map flows into

network routes could lead to significant overall collective performance degradation and

inconsistency due to flow collision. Our goal is to maximize the aggregated collective

performance of all applications, and ensure fairness between different applications. We use

a slightly modified version of the greedy heuristics proposed in Hedera [53], where for each

flow we assign it the path that has minimal excess bandwidth demand. We round-robin

between flows from different jobs for fairness. For example, if two applications are both

performing collectives using hosts on rack A and B. There are 2 routes between A and B

and each application have 2 flows from A to B. FFA would assign each route a flow from
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both application. FFA takes the collective strategy configuration of all communicators as

input. As communication patterns solely depend on the collective strategy, FFA knows all

flows (RDMA connections) in the network. It then assigns each flow a route ID, where the

mapping is issued to MCCS service.

QoS features. MCCS enables priority control at both coarse-grained resource allocation

and fine-grained communication.

Example #3: Priority flow assignment (PFA). We modify FFA to allow some routes

to be reserved for high priority applications. We first fit flows of low priority applications

using only non-reserved routes, and flows of high priority applications are assigned best

routes from all available ones. In our example, PFA can dedicate one of the two routes

between rack A and B to the prioritized application.

Example #4: Traffic scheduling (TS). With priority flow assignment, we can dedicate

networks links to some of the highest priority applications. However, we may still have

some applications sharing links. MCCS could enforce a traffic schedule to control when

each application can send out traffic. In our implementation, we apply a simple time

window based approach inspired by CASSINI [230] to interleave traffic. TS invokes MCCS

tracing API and requests a trace of a prioritized application. TS then analyzes the idle

cycles of the application when it is not issuing collectives. TS sends a time interval schedule

to MCCS service. Transport engines in MCCS service then allow other applications to send

traffic only when the prioritized application is idle.

4.5 Implementation

MCCS is implemented in 13.5K lines of Rust: 1.5K for the shim library and IPC

implementation, 6K for control and management planes, and 6K for transport engine and

transport protocols.

Collective CUDA kernels and transports. We adapt CUDA kernels from NCCL v2.17.1

for computation and intra-host communication. We modify the kernels so that the commu-

nicator resources on the kernel side (e.g., ring buffers) can be set up by proxy engines in the
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MCCS service. We focus on ports of NCCL’s ring AllReduce and AllGather kernels; how-

ever, it is straightforward to implement other collective operations, P2P communication,

and other algorithms (e.g., tree algorithms). For transport protocols, we implement support

for channels using host shared memory and RDMA; other channels, such as NVLink, can

also be integrated.

Internal engine scheduling. Our engines are designed similar to asynchronous futures in

Rust. A pool of runtimes is used to execute the engines, where each runtime corresponds

to a kernel thread. Engines can be scheduled on either a dedicated runtime or a shared

one. Runtimes without active engines can sleep to release the CPU. Currently, we dedicate

a runtime to each engine. Compared with NCCL, which only uses an additional thread

per GPU for the transport agent, our prototype would use 2 more threads for the frontend

and proxy engines. However, we note that if multiple applications use the same GPU,

they will share a proxy engine. We do not focus on CPU usage optimization as a core

goal in our prototype, and we could implement better engine scheduling strategies to lower

CPU utilization (e.g., frontend and proxy sharing a runtime if only one application uses

the GPU).

Management. We leverage policy-based routing at the switch to achieve explicit route

control for implementing FFA and PFA. Based on the assigned route ID for each RDMA

connection, MCCS service modifies the UDP source port of ROCEv2 packets. The source

port is not used by ROCEv2 protocol, hence we install a routing policy on switch that maps

flows to routes based on the UDP source port specified by MCCS service. To implement

TS, we currently use a hard-coded logic directly embedded in the transport engines, and

we manually profile applications offline. We note that such TS scheduling logic could be

easily integrated into a dynamic library function loaded by the transport engine, while the

communication trace of applications can be retrieved from the MCCS management API.

For our evaluation, we consider the case in which all tenants utilize MCCS for collective

communication. However, this is not strictly required. Even if only a subset of tenants

use MCCS, MCCS can still collaboratively schedule the collectives of that subset, while
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FIGURE 4.4: Testbed topology and multiple applications evaluation setups.

treating other flows as background flows (and adapt to them).

4.6 Evaluation

We evaluate the capabilities of MCCS using a small-scale testbed. We also conduct

large-scale simulations to quantify the performance benefits of collaborative scheduling

enabled by MCCS for large compute clusters.

4.6.1 Testbed Setup and Workloads

Figure 4.4a presents the setup of our testbed. We have four nodes in our testbed, each

equipped with 2 NVIDIA RTX 3090 GPUs and a 100 Gbps Mellanox ConnectX-5 NIC.

Using a single 100 Gbps Mellanox SN2100 switch, we emulate a spine-leaf topology with 2

leaf switches and 2 spine switches through self-wiring. Four nodes are placed under two

racks, where each rack corresponds to a leaf switch. The links between the switches are

limited to 50 Gbps, while the links between each host and the leaf switches are limited to

100 Gbps. This means that the over-subscription ratio of our testbed is 2. On each host,

we use IB traffic class (TC) and rate limit each TC to emulate two 50 Gbps virtual NICs

(one per GPU).
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We use AllReduce and AllGather benchmarks to evaluate how MCCS can improve the

collective performance in both the case of a single application and the case of serving

multiple applications at the same time. For the single-application scenario, we use two

setups: a 4-GPU setup where one GPU and one 50 Gbps NIC on each host is used, and an

8-GPU setup where all two GPUs and two 50Gbps NICs are used. To show the effectiveness

of MCCS in a multi-tenant environment, we construct 4 setups on our testbed. These setups

include applications with different sizes and different placements, as shown in Figure 4.4b.

In addition to AllReduce and AllGather benchmarks, we evaluate training workloads

using a traffic generator with profile traces. The traffic generator is implemented with

Rust using the MCCS library. To collect the traces, we used PyTorch [207] v2.1.0, Deep-

Speed [233] v0.10.3 and Megatron-LM [252] to profile a VGG-19 model [254] with data

parallel training, and a 2.7B parameters GPT model [26] with tensor parallel training.

Baselines: We compare MCCS with NCCL (v2.17.1), which is not network topology aware

and cannot perform inter-host ring optimization. To quantify the performance overhead of

MCCS, we manually configure the inter-host ring used by NCCL with the results from our

locality-aware ring configuration algorithm to serve as one of the baselines. We denote this

baseline as NCCL(OR), i.e., NCCL with optimal ring.

4.6.2 Improving Single Application

We first evaluate how the performance of a single application can be improved with

topology-aware scheduling capability enabled by MCCS. We run AllReduce and AllGather

benchmarks of different data sizes (measured by output buffers). We report the algorithm

bandwidth [193] measurement, which is calculated as output buffer size divided by execution

time. To evaluate the system overhead introduced by MCCS, we also evaluate MCCS

without our flow assignment algorithm, and instead rely on ECMP for routing. Figure 4.5

shows the results in the 4-GPU and 8-GPU setups. Our full solution is denoted as MCCS.

We also evaluate a version of MCCS without doing flow assignment: MCCS(-FA).

MCCS’s system-level performance overheads can be calculated by comparing MCCS(-
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FIGURE 4.5: [Single application]: Algorithm bandwidth of AllReduce and AllGather. The
shaded areas represent 95% percentile intervals.

FA) and NCCL(OR), which both use the optimal ring from our ring configuration algorithm.

MCCS has negligible system-level performance overheads when data size is above 8MB. On

4 GPUs, MCCS(-FA)’s algorithm bandwidth is 63% lower than NCCL(OR) on 512 KB All-

Gather (which corresponds to 128KB input per GPU) and 51% lower on 512KB AllReduce,

but the performance difference decreases to 9.7% for 8 MB AllGather and 0.75% for 8 MB

AllReduce. The reason is that for large messages, MCCS’s performance is bottlenecked by

the collective communication’s data transfer. For small messages (less than 8 MB), MCCS

suffers from performance penalties due to the latency overhead introduced on the datapath.

The communication between the application and the MCCS service, as well as between the

internal engines of the MCCS service, incurs an overall latency of 50-80 us.

NCCL’s performance is the worst because NCCL itself does not know the best ring con-

figuration. Comparing NCCL and NCCL(OR), we find collective algorithm optimizations
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FIGURE 4.6: [Single application]: Showcase of adapting to background flows.

play a crucial role in achieving high performance. NCCL(OR) is 56% better than NCCL

on the 4-GPU setup and 78% better on 8-GPU the setup for 512 MB AllReduce.

To understand how ECMP plays a role in AllReduce and All Gather performance, let’s

look at the 8-GPU case in Figure 4.5 because the 8-GPU scenario has cross-rack traffic. For

512 M AllReduce, MCCS outperforms MCCS(-FA) and NCCL(OR) by 46%. Note that all

three approaches use optimal ring configurations. The key reason is that flow assignment is

fundamental to avoiding flow collision in ECMP, so only optimizing the collective algorithm

insufficient.

MCCS enables joint optimization of collective communication algorithm and flow schedul-

ing by a cloud provider. Combining both ring configuration and flow scheduling techniques,

MCCS delivers an 1.6x speed-up on the 4-GPU setup and a 2.4x speed-up on the 8-GPU

setup on average for 8 MB-512 MB AllReduce and AllGather compared to NCCL.

Dynamic changes of collective communication strategies to adapt to background flows.

Here we also showcase the capability to reconfigure an application’s collective strategy at

runtime without interrupting the application. We use an example scenario to demonstrate

this feature. We leave the monitoring of background flows to external components. For

instance, a switch agent can be configured to report to a centralized manager when there

are persistent large flows that are not managed by MCCS. The centralized manager can

then send a new configuration to MCCS service. With our testbed, we emulate a topology
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shown in Figure 4.6a, where each of the server is connected to a switch, and the four

switches are linked as a ring. We instantiate an 8-GPU AllReduce job, the the AllReduce

job uses a ring algorithm that connects hosts clockwise. As shown in Figure 4.6b, at

time 7.5 s, a background flow of 75Gbps between two switches in the clockwise direction,

the available capacity for the AllReduce job drops to 25 Gbps. However, the switch links

counterclockwise is not affected. If the collective strategy configuration is not adjusted,

the AllReduce algorithm bandwidth drops from 5.9 GB/s to 1.7 GB/s. MCCS enables the

application to recover its collective performance by transparently reverse the ring when

the background flow starts. After reconfiguration command is issued (at time 12 s) by the

external centralized manager, the AllReduce bandwidth immediately recovers to 5.9GB/s.

4.6.3 Improving Multiple Applications

Next, we evaluate how MCCS improves the overall performance with a centralized view

of all applications and collaborative schedule their collective communication. Figure 4.7

shows 128 MB AllReduce performance in the 4 different setups, as described in Section 4.6.1.

We report bus bandwidth [193] of each application, which is normalized version of the

algorithm bandwidth. Here we use bus bandwidth because it is independent of collective

algorithm and the number of participants. It reflects the hardware peak bandwidth for

inter GPU communication. The aggregated bus bandwidth of all applications indicates

the overall network utilization, while the proportion each application gets allocated reflects

fairness of allocation. For ablation study, we also compare with the baseline of MCCS

without fair flow assignment. We denote this baseline as MCCS(-FFA).

For all setups, MCCS (with FFA) not only achieves the highest aggregated bus band-

width but also ensures fairness across applications. It outperforms NCCL by 75% on av-

erage. All applications in setups 1, 2, and 4 use the same amount of NICs per host, so

they should have identical inter-host GPU communication performance. MCCS therefore

equally distributes the bandwidth between different applications. In setup 3, application A

uses 2 GPUs and 2 NICs per host, while B and C use only 1 per host. Therefore, applica-

69



NCCL NCCL
(OR)

MCCS
(-FFA)

MCCS
0

5

10

15

B
us

 B
W

 (G
B

/s
) A B

(a) Setup 1

NCCL NCCL
(OR)

MCCS
(-FFA)

MCCS
0

5

10

15

B
us

 B
W

 (G
B

/s
) A

B
C

(b) Setup 2

NCCL NCCL
(OR)

MCCS
(-FFA)

MCCS
0

5

10

15

B
us

 B
W

 (G
B

/s
) A

B
C

(c) Setup 3

NCCL NCCL
(OR)

MCCS
(-FFA)

MCCS
0

5

10

15

B
us

 B
W

 (G
B

/s
) A B

(d) Setup 4

FIGURE 4.7: [Multi applications]: Application bus bandwidth. Error bars represent 95%
percentile intervals.

tion A’s inter-host collective performance should be 2 times that of applications B and C.

Again, MCCS achieves fair allocation as the bus bandwidth distribution among A, B and C

is close to 2:1:1. Using ECMP fails to guarantee fairness among applications. For instance,

in setup 3, the performance ratio between applications A and B for MCCS(-FFA) is 1.7:1

instead of 2:1.

4.6.4 Training Workloads with QoS

We evaluate MCCS using GPT and VGG training traces. We use setup 3 for our

evaluation. We assume A, B, C represent three tenants sharing the cluster. A is assigned 4

GPUs to train a VGG model from scratch on a large dataset, while B and C are assigned

2 GPUs each to finetune GPT models.
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Fair scheduling speed-ups every workload. Using our traffic generator on MCCS to simulate

the workloads, we report their job completion time (JCT) in Figure 4.8 under different

scheduling approaches. Here A has the highest priority, followed by B, while C is the lowest.

Error bars represent 95% percentile intervals. The JCT of each workload is normalized to

its respective value under fair flow assignment (FFA). We find that ECMP routing degrades

every workload. Besides having high performance variance across 10 trails, it also leads to

18%, 22%, 14% slower job completion on average, for A, B, C respectively.

QoS capabilities enable workload prioritization. Running the workloads from all three ten-

ants at the same time inevitably result in contention of network resources. Even with fair

flow scheduling, the performance of a workload would still degrade, compared to dedicate

the entire network for that workload by running it independently. In this case, the in-

frastructure administer may prefer prioritizing some tenants. We showcase our two QoS

techniques in Section 4.4.3 to demonstrate MCCS’s capabilities for enabling QoS through

controlling both coarse-grained resource allocation and fine-grained communication.
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We assume an administrator wants to prioritize A over both B and C. Using priority

flow assignment (PFA), we dedicate one of the two routes between the two racks to A, with

B and C sharing the other one. PFA speeds up A’s training by 13% compared to FFA and

34% compared to ECMP.

With A prioritized using PFA, B and C now shares a single bottlenecked route, so

their performance degrades. If the administer wants to further prioritize B over C without

affecting A, flow assignment no longer works no remaining routes are available that we

can dedicate B to. Fine-grained communication-level QoS mechanism needs to be utilized.

Hence, in this scenario, we apply our time window based traffic scheduling (PFA+TS) to

prioritize B. Compared with PFA, in PFA+TS tenant B’s training is sped up by 16%.

Dynamic policy enforcement. We demonstrate MCCS’s flexibility in policy enforcement,

by showing how network administers can adapt their QoS policies based on current cluster

status with dynamic application arrivals. We illustrate the training throughput of A, B, C

in Figure 4.9, where they arrive sequentially. The throughput is normalized to their values

under FFA. A already occupies the cluster at the start, which is followed by B’s arrival at

t1. As A has two 50G NICs per host, it can utilize all the 100G switching capacity of the

network when there are no other tenants share the network. After B arrives, A’s throughput

is decreased by 17%. Then, C arrives at t2, and all three of them share the network using

FFA. The throughput of A now drops further by 14%. There are also some fluctuations in

the throughput of all applications, which could attribute to network congestion. After t3,

the administer prioritizes A over B and C using PFA, A’s performance therefore improves by

13%. At time t4, the administer the further prioritizes B over C using TS, the throughput

of B is increased by 18%. The fluctuations after t3 is introduced by our time window based

TS.

4.6.5 Simulations

We evaluate how a larger scale deployment can benefit from MCCS via simulations. We

compare among three solutions (1) random ring selection, (2) optimal ring (OR) selection,
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FIGURE 4.10: [Simulations]: MCCS’s speedup of AllReduce completion time compared
with random ring.

and (3), OR with fair flow assignment (FFA). In OR, we always create optimal rings, with

the number of rings equal to the number of network multi-path choices. In OR+FFA

(representing MCCS), we assign each ring to each of the path in the network.

We simulate a cluster of 768 GPUs. We have 16 spine switches and 24 leaf switches fully

connected. Each leaf switch has 4 hosts connect to it. Each host has 8 GPUs and 8 NICs.

All the network links and NICs are 200 Gbps. The oversubscription of the network is 2,

which is identical to our testbed setting. Our flow-level simulator assumes per-flow fairness.

For the workload and job arrival pattern, we adopt a similar setting as the distributed data-

parallel deep learning experiment in NetHint [33]. We run 50 jobs of ResNet-50 of model size

100 MB in each experiment. The job sizes are either 16 or 32 GPUs with equal probability.

We consider two types of job placement. Random placement means the simulator allocate

randomly GPUs to a job. Compact placement means the simulator assigns GPUs that

belong to the same rack to a job whenever possible. The jobs arrival follows a Poisson

distribution with the lambda set to 200 ms. We run each experiment 5 times and report

the average speedup for each job’s AllReduce completion time.

Figure 4.10 shows the CDF of performance improvement of using MCCS compared to

using NCCL. The numbers in the legend and the vertical dashed lines represent the average

speedups across jobs relative to random ring. For random placement, OR and OR+FFA

speed up the collective communication by 2.6x and 3.3x compared with using random rings.
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With flow assignment, each job can maximize the utilization of the inter-rack network

bandwidth. This is because for each network path, we assign a ring to utilize it. Without

FFA, the flows within a job can collide on the same physical path. In compact placement

setting, OR and OR+FFA still outperform random ring by 3.3x and 3.4x. However, FFA

does not add much to OR because the job almost never span more than two racks, and the

link capacity of even a single path between two racks would suffice the traffic demand. We

observed that the schedule computation takes within 1 ms on average for a job size of 32

GPUs and scales linearly with the job size. The rescheduling occurs only when a job joins

or exits.

4.7 Related Work

Integrating collective communication into the network. There are several prior efforts in

integrating collective communcation into the network. ATP [133], SwitchML [244], and

PANAMA [65] propose offloading AllReduce operations to in-network hardware to enable

multi-tenant distributed machine learning. The key difference is that MCCS targets at the

public cloud environment, where these works all require tenant applications to be trusted.

In these works, a misbehaving or malicious application can circumvent the cloud provider

designed collective communication strategy, and this will require well-behaving tenants to

adjust their strategies accordingly. In MCCS, all the collective operations are managed

through the MCCS daemon. Another difference is that MCCS’s performance gain is not

from in-network gradient aggregation but from dynamic adjustment to collective commu-

nication strategy.

Exposing public cloud network information for tenants to pick collective communication

strategies. A separate line of work focuses on letting tenant acquire information about the

physical network of the cloud provider in order to pick collective communication strategies.

NetHint [33] presents an approach that the cloud provider periodically exposes a hint, con-

taining a subset of the physical network topology and link utilization, to help the tenant pick

collective communication strategy. However, a cloud provider may have security and pri-
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vacy concerns of exposing their physical network topology and network utilization to cloud

tenants to prevent adoption. PLink [161] and Choreo [132] let tenant applications measure

their VM-level network bandwidth in order to pick collective communication strategies or

decide on job scheduling. These approaches are not guaranteed to be accurate, because re-

verse engineering the network configurations from a single tenant’s observation is generally

hard. Further, in both approaches, tenants are making their own decisions on collective

communication. In comparison, MCCS controls all tenants’ collective communication.

Choosing collective communication strategies based on network topology and bandwidth.

Optimizing collective communication strategies for particular network topology and band-

width configuration is a standard task for developers running large-scale workloads on

supercomputers [46, 119]. For machine learning workloads, several prior works have fo-

cused on improving collective performance [208, 282, 249]. These works all focus on the

single-tenant scenarios. Our work focuses on the multi-tenant public cloud setting. We

need to deal with challenges of dynamically changing collective communication strategies,

which is not a concern in single-tenant scenarios.

Quality of Service (QoS) in a multi-tenant network. How to let multiple tenants share

a cloud network with QoS guarantees is an old topic. A cloud datacenter network often

uses a combination of congestion control [229, 4, 315, 79], load balancing [3, 121, 302,

198], and various types of rate limiting techniques [12, 106, 131, 136, 216, 5]. These works

focuses on how to share bandwidth given a set of point-to-point network demand. The

optimizations MCCS addresses is on having multiple collective communication operations

share the bandwidth by selecting collective communication strategies (e.g., the ordering

of nodes in an AllReduce ring for each tenant), which is a different and complementary

problem.

4.8 Summary

This chapter explores a new service-based approach to collective communication called

MCCS. MCCS allows a cloud provider to select collective communication strategies for cloud
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tenants and enable the cloud provider to enforce QoS policies on collective communication

operations. Collective communication strategies selected by the cloud provider improves

tenant performance because the strategies is picked with the knowledge of the underly-

ing cloud network characteristics (i.e., topology, utilization) and can adapt when network

characteristics changed. Our testbed and simulation-based evaluations have shown that

MCCS improves tenant collective communication performance by up to 2.4x compared to

state-of-the-art collective communication libraries, while adding more management features

including dynamic adjustment of collective communication algorithm, quality of service, and

network-aware traffic engineering.
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5. JellyBean: Serving and Optimizing Machine Learning
Workflows on Heterogeneous Infrastructures

In Chapter 3 and Chapter 4, we rearchitect lower-level communication abstractions using

a service based architecture to improve the performance and manageability of distributed

workloads. Next, we step up to application deployment perspective and show how can a

system manages and optimizes the deployment of workloads, reducing their deployment

costs. In this chapter, we focus on machine learning inference workflows. We present

JellyBean, a system that optimizes and serves these inference workflows on heterogeneous

infrastructures across edge and cloud. JellyBean aims to optimize the total serving cost of

a workflow, given user specified service-level objectives like throughput and accuracy.

5.1 Introduction

Let’s start by considering an example ML inference workflow and how to deploy it on

heterogeneous infrastructure.

Example. Consider the visual question answering (VQA) workflow in Figure 5.1 for the

query “Who is at the front door? ”. The workflow uses multiple ML models for feature

extraction and model inference. The infrastructure includes edge devices (e.g., cameras) as

well as cloud datacenters. To deploy ML workflows on heterogeneous infrastructures, the

following decisions must be made:

• Model selection. With advances of AutoML and model compression techniques (e.g.,

pruning, quantization [100, 243]), each ML operator in the workflow1 can use various

structures or hyperparameters; e.g., the speech recognition operator in Figure 5.1 may

use the base variant for a faster execution or large for a better accuracy. To provide

a viable accuracy-efficiency tradeoff, picking individual models in the workflow is

non-trivial.

• Worker assignment. Each operator must be assigned to a worker for execution. Fig-

ure 5.1 demonstrates two execution plans - placing compute near the data source to

1 Workflows are generated using a standard parser [110] or a natural language interface [124], which are
orthogonal to this chapter. See Section 5.3 for more details.
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FIGURE 5.1: An example ML workflow of VQA on heterogeneous infrastructures. Differ-
ent execution plans result in different serving costs, i.e., compute and network.

reduce communication, or moving them to the cloud to take advantage of more pow-

erful (and likely cheaper) compute resources. Choosing an appropriate plan depends

on resource availability and costs.

Goals, challenges, and prior solutions. Given the ML workflow, resource availability, input

throughput, and target accuracy, we aim to optimize the total serving costs that consist of

both compute and networking. It is easy to see that model selection and worker assignment

formulate a complex search space.

Current ML serving platforms such as Ray [183], Clipper [41], PyTorch [207], and

Spark [299] focused on homogeneous infrastructures (namely cloud datacenter environ-

ments). Unfortunately, ignoring resource heterogeneity (e.g., compute, network) often

leads to sub-optimal deployments and even feasibility issues given the infrastructure con-

straints (e.g., on links shared among many high data rate sensors like video cameras). Some

prior systems solve this problem in an ad-hoc manner for specific ML workflows, individ-

ual models, and fixed infrastructure configurations [41, 108, 146, 301, 250, 237, 1, 207].

Chameleon [108] considers video analytics with one model on a single GPU; Nexus [250]
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considers workflows on a homogeneous GPU cluster with no model choices. To our best

knowledge, there is currently no off-the-shelf system that optimizes the deployments of ML

workflows on heterogeneous infrastructures. As a result, users often manually determine

how to best deploy ML workflows.

JellyBean ideas and approaches. We address some initial problems for optimizing ML work-

flows on heterogeneous infrastructures, and propose a system JellyBean. Given an ML

workflow and specifications of the infrastructures, the JellyBean optimizer quickly finds a

cost-efficient execution plan with model choices and worker assignments using the following

insights:

First, we formulate the problem within a cost-based optimization [32], minimizing the

compute and network costs while meeting the input throughput and accuracy constraints.

However, optimizing ML workflows poses novel challenges. In the above example, even

though we can profile the accuracy and cost for every single model, understanding how

different models interact for estimating the overall query accuracy is non-trivial. We lever-

age a simple but effective model profiling strategy that relies on sampled measurements of

interactions between models to estimate query accuracy.

Next, simultaneously solving for optimal model choices and worker assignment is NP-

hard and results in an exponentially large search space. We reduce the search space and

provide a fast query optimization by (1) making two simplifying assumptions that hold

for many real-world scenarios, and (2) identifying key parts that are amenable to greedy

approaches. Our evaluations in Section 5.6 show the efficacy in practice.

Lastly, to serve and optimize ML workflows on heterogeneous infrastructures, a flexible

runtime is critical such that the optimizer may explore plans in which models are placed in

different workers and locations. Due to the lack of an existing system to support this, we im-

plemented the JellyBean processor upon Naiad [185] and Timely Dataflow [270], modifying

them to enable operator-level parallelism – each worker may handle a subset of the overall

workflow. Such a processor and optimizer decide where to run what ; for how to execute each

individual operator, we use a containerized runtime with virtualization and ML compiler
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techniques [280, 34] such that JellyBean can cope with the infrastructure heterogeneity.

We performed experiments on various real-world use cases, including the Nvidia AI

City Challenge [2] and Visual Question Answering (VQA) [6]. Compared with running the

ML workflows (1) with all data pushing to the cloud, (2) with all computations staying on

the edge, and (3) with optimizations carried out by several worker assignment heuristics,

better assigning different parts of the workload to different infrastructure is significantly

more effective. We also compared with a few recent ML serving platforms and found that

JellyBean is significantly better to achieve the user-specified query-level goal. JellyBean

achieves close to equivalent performance compared with an exhaustive brute force search

on a small-scale experiment and can still generate efficient physical plans when brute force

is infeasible on larger-scale experiments. JellyBean can reduce the total serving cost for

VQA by up to 58.1%, and for vehicle tracking in AICity by up to 36.3% compared to

the best baselines. JellyBean also outperforms prior ML serving systems (e.g., Spark on

the cloud) up to 5x in total serving costs. We have open sourced our prototype: https:

//github.com/libertyeagle/JellyBean.

Contributions of this chapter can be summarized as follow:

• The JellyBean optimizer to derive highly effective execution plans for complex ML work-

flows on heterogeneous infrastructures given the infrastructure constraints and model

choices.

• A flexible JellyBean processor based on a graph dataflow to execute the optimized plans

and enable operator-level parallelism on heterogeneous infrastructures.

• Evaluations on real datasets show significant performance improvements over state-of-

the-art ML serving platforms as well as running the workflows using heuristics.

5.2 Background

Serving ML on Heterogeneous Infrastructures. These ML workflows show that many ap-

plication scenarios have input data injected from edge devices. To deploy ML workflows

upon these inputs, one way is to put them in cloud datacenters. Clearly, this can often be
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suboptimal since raw inputs (e.g., images and videos) can be large and data movement can

be costly.

Moving compute to near the data source is a well-known technique in the big-data

systems literature and has been proven to be effective in many use cases [88, 222]. However,

today developers still have to hard code or manually tune the physical execution plans for

each ML workflow depending on the amount of resources on the edge and costs of various

types of resources [108, 170, 117]. We believe this manual approach cannot scale with the

rapid development of edge data centers and IoT devices.

Figure 5.2 shows a cloud with three regional datacenters, several local hubs, and edge

compute devices. A different execution plan is needed for each partition. For example,

different local hubs can have different numbers and types of workers. The cost of running

models at different locations can also be different, depending on the cloud region and
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Table 5.1: Comparing current ML systems. MS: model selection. WA: worker assignment.

System Parallelism
QO

Usage
Heterogeneity

MS WA Worker Infra.

PyTorch [207] Data ˆ ˆ Both ˆ ˆ

TF [1] Data ˆ ˆ Both ˆ ˆ

Spark [299] Data ˆ ˆ Infer ˆ ˆ

Clipper [41] Data ˆ ˆ Infer ˆ ˆ

Ray [183] Data, Model ˆ ˆ Both ˆ ˆ

Optasia [159] Data, Op ˆ ✓ Infer ˆ ˆ

Pathways [13] Data, Model ˆ ˆ Train ✓ ˆ

Llama [238] Data, Op ˆ ✓ Infer ✓ ˆ

Scrooge [86] Data, Op ˆ ✓ Infer ✓ ˆ

JellyBean (Ours) Data, Op ✓ ✓ Infer ✓ ✓

the resource availability at local hubs. We use the term partition to denote the tiered

infrastructure where different locations within a tier have similar resources. If a partition

contains multiple local hubs, they must have similar worker configurations. JellyBean can

be used to generate a physical plan per partition.

ML Serving Systems. In order to partially move the ML workflow to the edge devices,

besides being able to break it into modules or operators, another necessary condition is a

serving system that supports operator-level parallelism on heterogeneous infrastructures.

Prior ML systems focused on data, model (i.e., breaking large DNNs into operators) and

operator (i.e., breaking workflows into operators) parallelism on homogeneous infrastruc-

tures [41, 207, 159, 183], or on heterogeneous workers within a datacenter [238, 86, 13].

We present a qualitative comparison in Table 5.1. Recently, Google’s Pathways [13] has

started to investigate operator-level parallelism for training large deep neural networks with

hybrid cloud infrastructures of CPUs, GPUs, and TPUs. There still lacks an off-the-shelf

system for serving and optimizing ML workflows with model choices on heterogeneous and

especially IoT infrastructures. We provide a more detailed comparison with related systems

in Section 5.8.
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5.3 Overview

We discuss our JellyBean design and scope in this section.

System scope. JellyBean aims at serving and optimizing ML inference workloads that can be

decomposed into multiple operators deployed on heterogeneous infrastructures. We target

infrastructures that exhibit resource heterogeneity across tiers and resource homogeneity

within a tier. JellyBean operates over an infrastructure configuration that describes a sin-

gle partition of a potentially larger infrastructure. The optimization takes into account

input throughput, resource cost, availability and efficiency, and targets scenarios in which

compute and communication are important factors in the total serving cost. The JellyBean

processor provides a flexible runtime and decouples resource heterogeneity using a con-

tainerized runtime with virtualization and ML compilers, hence targeting a wide spectrum

of edge and cloud devices.

System overview. In Figure 5.3, we present an overview of our JellyBean system architecture

and the workflow for processing an ML workflow. There are two main components: the

query optimizer (QO) and the query processor (QP). The query optimizer generates an

execution plan for the ML workflow, while the query processor runs the execution plan

across heterogeneous infrastructure.

JellyBean takes the following inputs:

• Workflow. Each input workflow is a directed acyclic graph (DAG) with compute

operators on the nodes and input-output relationships between operators on the edges.

The operators can be ML models or relational operations. Declarative queries can be

parsed into workflows [110, 124] as is done in [160, 116].

• Model choices for each ML operator. Each ML operator may use different models

with the same semantics but different structures or hyperparameters. These models

have different accuracy and cost profiles. JellyBean may profile these models offline if

necessary.

• Infrastructure specifications. We consider infrastructures that consist of heterogeneous
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resources (i.e., compute, storage and networking) in multiple tiers - each tier is a group

of efficiently interconnected resources that share common specifications.

• Input throughput and target accuracy. Users provide a target accuracy on the query

output; meanwhile, JellyBean must keep up with the input throughput. The target

accuracy restricts the model selection to generate a low-cost physical plan.

Our query optimizer generates the physical plan in two steps. First, it selects models

that satisfy the target accuracy with the least costs (Section 5.4.2). Here we do not have

worker assignments yet, so the exact costs of deploying the selected models are unknown.

We approximate the costs based on the characteristics of the models (e.g., model sizes,

the latency of inference on a standard CPU/GPU) and use beam search to select the best

K configurations. Each configuration includes the model selection for all models in the

workflow.

The second step is to determine the worker assignment (Section 5.4.3). We again use

a beam search method. We progressively determine the worker assignment by choosing a

set of workers for each operator to achieve the lowest compute and networking costs. More

than one worker may be assigned to an operator to consolidate the costs. The best worker

assignment is derived then for each of the K configurations and choose the best physical

execution plan for both model selections and worker assignment.

The JellyBean processor is a distributed query processing engine upon Naiad [185] and

Timely dataflow [270] to provide a low-overhead dataflow abstraction. However, Naiad and

Timely Dataflow use a homogeneous datacenter setup with data parallelism only JellyBean

augmented their codebase to incorporate operator-level parallelism, allowing different work-

ers to run different portions of the workflow. Each worker leverages a containerized runtime

with virtualization or ML compilers [34, 194] to offset heterogeneity (Section 5.5).
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Table 5.2: Set of common notations used in our description.

Notation Definition

U
se

r
In

pu
t

G Graph of logical plan (G = xV, E, M, my)
Vertices V, Edges E, Models M
Model Choices m : V Ñ P(M)

I Set of infrastructure tiers
W, Wi Set of workers overall [or for tier i P I]

CB Worker-to-worker communication cost (CB : WxW Ñ $
byte )

T, Tv Input throughput overall [or for node v P V]
A Target overall accuracy

Pr
ofi

le
r CC Unit compute cost for model on worker (CC : MxW Ñ $)

tw
u Throughput for model u on worker w
r Unit input size at v from u (r : VxV Ñ byte)

Q
O s Model selection (s : V Ñ M)

a Worker assignment (a : V Ñ P(W))

5.4 Query optimizer
5.4.1 Problem formulation

We consider our infrastructure to be composed of a number of workers with diverse

computing capability distributed across multiple tiers (e.g., edge, hub, and cloud). Data

sources are located on the lowest tier (i.e., W1), often with some limited compute resources.

Workers on higher tiers tend to have more computing capability but are far away from the

data sources. We assume a set of workers W, which are partitioned into |I| tiers.

Let the input of our optimizer be a logical plan graph G in which each node v P V

corresponds to an ML or regular relational operator. For each ML operator, the user

specifies a list of candidate models m(v), each having a different accuracy and runtime

performance. These models can be developed independently or can be variants of other

well-known models through quantization [51, 100], distillation [69], and pruning [155, 243].

Section 5.7 discusses techniques to generate a diverse set of model choices. A model’s

accuracy and performance can be either provided by the user or profiled by JellyBean. We

use s(v) to denote the model choice for v. Meanwhile, we assign for each logical operator v

a list of workers a(v) in the heterogeneous infrastructure. The infrastructure specification
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contains sets of each type of worker a tier has, the cost of each type of worker, and the

communication costs between different tiers. Note here our formulation only considers a

single partition. This is because each partition (shown in Figure 5.2) requires a different

physical execution plan. Table 5.2 illustrates the notations used in this chapter as well as

inputs to our query optimizer. Note that the compute and communication costs here as

unit monetary costs; the former is the hourly price per worker, and the latter is based on

network traffic (i.e., data movement on the DAG edges).

We aim to solve worker assignment2 a : V Ñ P(W) and model selection s : V Ñ M

simultaneously, such that the overall query accuracy (acc) is beyond a user-specified target

A, and that the system’s throughput (ta(vout)
vout at the output node vout) is no less than a

target T. We describe our target cost function and our query optimization as:

arg min
a,s

ÿ

vPV

ÿ

wPa(v)

Cc(s(v), w) + (5.1)

ÿ

(u,v)PE

ÿ

(wu,wv)P
a(u)ˆa(v)

CB(wu, wv)R(u, v)

s.t. acc ě A, ta(vout)
vout ě T,

where R(u, v) denotes the consumed network bandwidth from u to v. The formulation

above minimizes the ML workflow’s combined compute (first term) and networking (second

term) costs and is NP-hard, because the sub-problem of solving only the worker assignment

is already a combinatorial optimization that can be reduced to a binary knapsack problem

(which is NP-complete [64]).

Assumptions. We make two assumptions in our optimization to reduce the problem com-

plexity without losing generality, as these assumptions hold for many realistic use cases:

• A1: We assume that communication costs CB(w1, w2) to have the following properties:

1) set to 0 if w1 and w2 are on the same infrastructure tier and are in the same location,

2 We note that assigning for each operator a list of workers is equivalent to picking the model to execute for
each worker.
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2) otherwise set to a positive value. This is common in many use cases, as workers in

the same tier either do not inter-communicate (e.g., among edge devices at different

locations) or use high-speed networking (e.g., among datacenter nodes) with negligible

costs.

• A2: We assume that all workers only communicate with peers in the same infrastruc-

ture tier or any higher tier, thus making information flow in one direction3. This

assumption implies that for all edges (u, v) P E, the set of workers a(v) are all on

tiers greater than or equal to the highest tier of any worker in a(u). This is reflected

in CB by values of +8 for pairs of workers that violate this one-way flow assumption.

Model Profiling. JellyBean needs to understand the impact of selecting different models

on accuracy and throughput in order to meet the constraints specified by the user for

the overall workflow. While users can optionally specify the accuracy and performance

of models for different infrastructure workers, JellyBean supports automatic profiling using

validation datasets provided by the user. If a worker cannot run a particular model (e.g.,

model requires a GPU but the worker is CPU-only), we set both the accuracy and the

throughput to be zero. Otherwise, JellyBean measures the runtime performance in terms

of the throughput for the model on every worker type in the infrastructure. Note that

we use the mean throughput of each model (and thus compute cost) relative to the input

throughput during cost calculation, since operators in ML workflows may have different

output-to-input ratios. For model accuracy, we need to understand the accuracy response

of a model with respect to the accuracy of upstream models whose outputs are fed into it.

JellyBean varies the input accuracy by selecting different upstream models (with different

accuracy profiles) and measures the output accuracy response of the model under test.

For example, consider a model with two inputs and exhibits the following accuracy profile:

(60%, 50%) Ñ 55%, (50%, 60%) Ñ 60%, (70%, 90%) Ñ 65%. This profile enables us to

conservatively estimate the output accuracy by identifying the row that is closest to (but

3 We note that the final result from the workflow may be transferred back to the lowest tier (e.g., user’s
device), but we do not model this.
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not higher than) the accuracy of all inputs; for example, if the input accuracy is (55%,

83%), then we can conclude the output accuracy is at least 60%. One assumption we make

here is that the output accuracy is monotonically increasing with respect to each input

accuracy (with the others fixed). In Section 5.4.2, we demonstrate how we use the accuracy

profile to select models that satisfy the user’s target end accuracy.

Next, we describe our solution that finds highly effective execution plans as well as

components to derive query-level accuracy and, assign workers across the heterogeneous

infrastructure.

5.4.2 Model Selection

Model selection balances the inference cost and model accuracy:

Satisfying Accuracy Constraints. One challenge in our model selection is to estimate the

query-level accuracy given profiles of individual ML models, which can be non-trivial due

to the dependencies among them. So far, this has not been discussed in any prior work,

and we propose a solution here as follows.

We consider the dependency graph of the ML operators in the logical plan G. For

each operator, we can assign (choose) a model variant; the final accuracy for the model

selections s should satisfy a user specified accuracy threshold A. We use the model profiles

to determine whether a model configuration satisfy the accuracy constraint. In each model’s

accuracy profile, we need to choose a row such that the output accuracy of a model is larger

than a downstream node’s required input accuracy. Also, the final output model’s accuracy

has to be above the target end-to-end accuracy.

Reducing the Total Cost. Another problem during model selection is that we do not know

worker assignments yet and thus we cannot use a concrete cost. Thus, we need to choose

models based on a different cost definition. We can use the execution latency on a single

GPU or the number of parameters in the model. In our current prototype, we use a simple

notion of cost: the latency for model inference on the most powerful infrastructure worker

(e.g., NVIDIA V100 GPU in our evaluation).
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We use the accuracy profiles and perform a beam-search to find the model assignments

that can attain user’s specified end-to-end accuracy threshold. We traverse the graph in

reverse topological order, and assign the model for each node. Each candidate is a com-

bination of partial model assignment and the accuracy requirements for upstream nodes.

Specifically, we first extract the accuracy requirement for a node that we are currently as-

signing, and then iterate through all the candidate models for the node and find models

whose output accuracy is greater than the threshold from the downstream models. When

there are multiple models satisfying the output accuracy, we pick the ones that have the

lowest cost. There can be many model configurations that satisfy the accuracy constraint,

and we maintain the best BMS number of model configurations based on their costs. After

one model selection is found for this node, we then update the model assignment to propa-

gate the accuracy constraints to upstream nodes until all nodes have a model assignment.

We have to maintain more than a single candidate model configuration because our cost

estimation can be not accurate. The real cost should be the actual cost of deploying this

model on a particular worker type in the edge or cloud; here we simply use the latency or

model size as the cost.

5.4.3 Worker Assignment

The goal here is to take the set of candidate model selections from the previous step and

determine the best mapping from models to available infrastructure workers that minimizes

the overall cost while meeting the input throughput to our system. We will first present

an overview of our worker assignment algorithm, which makes greedy choices along two

dimensions to reduce the large search space for worker assignment: 1) the order of assigning

nodes v P V to workers, and 2) the workers w P W to be assigned. Next, we will describe

our approach for determining the per-input cost of assigning the execution of a model to a

given worker, which enables our greedy selection of workers. We also discuss key refinements

that improve optimality in practice.

Computing Assignments. We present our solution in Algorithm 1. We consider as input a
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specific candidate model selection (out of the top-K candidates produced by the previous

phase). The output consists of a mapping between nodes in the logical graph and sets of

available workers.

Algorithm 1: Worker assignment.
Input : Model selection s : V Ñ M
Output: Worker assignment a : V Ñ P(W)

Function Avail(W, a, i) Ñ Returns unassigned workers in tier ě i

Function MinCost(W, s, v) Ñ Returns worker with min cost (Eq 5.2)

Function TCoeff(w) Ñ Returns throughput coefficient based on tier

Function Top(a, k) Ñ Returns top-k best assignments in set

1 aB = t∅u // Current set of assignments in beam
2 for v P Topo(V) do
3 a1

B = tu // Next set of assignments in beam
4 for ab P aB // Iterates over current set of assignments in beam do
5 for i P I do
6 Trem = Tv, acur = ab

// Greedily assign workers up to throughput req.
7 while Trem ą 0 and |Avail(W, acur, i)| ą 0 do
8 acur[v] Y= MinCost(Avail(W, acur, i), s, v)
9 Trem ´= (tw

v ˆ TCoeff(w))

10 if Trem ď 0 then a1
B = a1

B Y tacuru

11 aB = Top(a1
B, BWA) // Keep only top assignments in beam

12 a = Top(aB, 1)

In Line 2, we start by iterating over each node v P V, using a topological ordering such

that parent nodes are assigned before their downstream child nodes. While an optimal

solution would need to consider the assignment of all nodes jointly, this is computation-

ally intractable. However, due to the nature of realistic workflows and our assumption

A2 that limits communication in one direction between tiers (i.e., from lower to higher),

greedily computing worker assignments based on the topological ordering is a reasonable

approximation. For any particular V and E, there may be many valid topological order-

ings; therefore, we extend our approach to also iterate over a constant number of different,

randomly-selected topological orderings to improve the optimality.

For a given node v, we need to assign a set of workers to execute ML operator (or
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task), such that we limit the cost while meeting the input throughput. Each worker can be

assigned to a node v4, and such assignments formulate a combinatorial optimization which

is NP-hard [64].

We use a greedy approximation for worker assignment by considering the cost of as-

signing a worker w to handle the execution of node v (with the assignment cost defined at

the end of this section). We assign workers based on availability (i.e., not already assigned)

and ordering from lowest to highest cost until the input throughput is met, or until we run

out of workers to assign (Lines 7-9). Given our assumption of one-way communication be-

tween infrastructure tiers (A2), if a node u is greedily assigned to a worker on a higher-tier,

then all nodes v P V, where there exists an edge from u to v, are unable to be placed on

lower tiers. We modify this by computing the greedy assignment over expanding pools of

available workers, where the number of pools is equal to the number of tiers |I| and the ith

pool contains all workers in the ith tier or lower. We use a beam search to reduce the search

space by keeping the best BWA candidate assignments (i.e., those with the lowest cost) out

of the BWA|I| considered at each step (Line 11).

Since each tier may be distributed among one or more locations, we cannot simply

consider the remaining throughput based on that achieved by a candidate worker w for

node u (i.e., tw
u ). Instead, we need to multiply this by the TCoeff(w), which computes the

factor based on the number of locations from the tier of w up to the root of the partition

(e.g., cloud tier). Consider an example infrastructure that consists of the cloud, hub (2

locations), and edge (5 locations); TCoeff(.) is 1, 2, and 10 for workers on the cloud, hub,

and edge (respectively).

Assignment Cost. To greedily pick workers with minimal unit (or per-input) cost, we need

to take both computation and communication costs into account. Considering the cost for

a node v P V, with model selection s, running on a worker w, our overall cost equation is:

CC(s(v), w) +
ÿ

(u,v)PE

ÿ

xPa(u)

CB(x, w)

(
tx
u

Tu

)
r(u, v), (5.2)

4 We use one-to-one mapping due to the low overhead of our processor. See Section 5.5 and Section 5.7.
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containing the unit cost for computation (first term) and communication (second term).

s(v) is the selected model out of all choices for node v, and the unit computation cost is

derived from the profiler using the cost of each worker and the throughput of the worker

while executing the selected model.

For the unit communication cost, we leverage all previous assigned nodes u P V that

have edges to the current node v. Hence, the second term involves summing the costs across

all workers assigned to u (i.e., x P a(u)) and the worker w that is being considered. Note

that we only consider the parents of v and not it’s children, since our greedy algorithm

operates in the topological ordering of the nodes, such that the assignments a(u) for all

child nodes u are already known. If wu and w are on the same tier, the communication cost

between the workers will be zero (A1); otherwise, there is some bandwidth-based cost for

the traffic between the infrastructure tiers for x and w. This bandwidth cost is multiplied

by the amount of communication for wu, which is based on the unit input size r(u, v) and

the fraction of that input which is handled by x. The fraction of input is equivalent to the

ratio of the throughput for u on x compared to the input throughput Tu. For instance, a

node v takes inputs from u that is assigned to an edge worker x1 (40% inputs) and a cloud

worker x2 (60% inputs). If we assign a worker at the cloud, the communication cost has to

include the split linkages. The term tx
u/Tu is the fraction of the u Ñ v traffic contributed

from x.

5.5 Query processor

We prototype JellyBean upon Naiad [185] and Timely Dataflow [270] code base, which

offered a low-overhead dataflow abstraction. However, there are additional features that

JellyBean requires. We outline the challenges and our implementations in the following.

Operator-level parallelism. Timely Dataflow is designed for data parallelism. Instead, Jelly-

Bean aims for operator-level parallelism, spanning the workflow and compute nodes across

different workers; hence they can execute different portions of the plan. The challenges here

are two-fold: (1) all workers in Timely Dataflow must execute the same set of operators
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with different data inputs; (2) Timely Dataflow uses all-to-all communications for progress

tracking, causing unnecessary overhead.

In the prior sections, we described our optimizer to assign workers to operators, where

each worker is responsible for one operator in the graph. Indeed, executions of pipelines or

workers that are assigned with multiple nodes are used in production database systems [202].

Our solution is simple but effective; as our experiments will show, we may put multiple

workers on a single device, since the compute and network overhead of our processor is low.

Therefore, each worker only acquires its input data from upstream workers and sends

its outputs to the downstream workers. We build a relay mechanism to serve as a "broker"

between adjacent workers. There can be one or more relays in each worker; each receives

input data from the relay nodes in the upstream workers. It also collects the outputs and

sends them to the relay nodes in the downstream worker. To implement this, we use a

thread for each upstream worker that keeps pulling data from the upstream worker’s relays

through TCP streams and maintaining proper buffers. There is also a thread for each

downstream worker that pulls output data and sends it to the relays of the downstream

workers. In such a manner, operator-level parallelism is achieved by properly parallelizing

independent workers (which can be on the same device), tracking their progress, and syncing

by treating each worker in our compute graph as a Naiad node. Lastly, we modified the

progress tracking algorithm to support node-to-node progress updates.

Networking protocols. Timely Dataflow supports communication among the worker nodes

only by relaying on the master node; this results in unnecessary data movements. We aug-

ment the networking protocols to enable peer-to-peer communications among the workers;

a low networking overhead is essential in a dataflow engine that supports operator-level

parallelism.

Containerized worker runtime. Timely Dataflow supports homogeneous runtimes only.

To offset runtime and hardware heterogeneity in JellyBean, each compute node deploys a

containerized runtime with a Linux virtual machine to hold one or more Naiad workers.

Table 5.3 illustrates part of the operators and models used in our experiments; each may
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Table 5.3: Some AICity models/operators used in our experiments.

Model #Parameters (Millions)

resnet 18 34 50 101 152
Object Re-identification 11.7 21.8 25.6 44.5 60.2

YOLO v5n v5s v5m v5l v5x
Object Detection 1.9 7.2 21.2 46.5 86.7

wav2vec2 base large
Speech Recognition 94.4 315.5

contain a feature extraction or classification model. Within each container, JellyBean op-

tionally applies ML compilers [194, 34] to adapt the model assigned by the QO to the worker

hardware. By default, the ML models are implemented in PyTorch within the Naiad map

functions.

Relational operators support. Timely Dataflow did not support relational operators in-

cluding filters, join and group-by-aggregation upon columnar inputs. We hence implement

these operators in JellyBean. The metadata is packaged with the data being transmitted

in-between the workers to facilitate relational operations.

Remark. The runtime backend of our prototype consists of 12K lines of new Rust code

beyond the Timely Dataflow v0.12. While our query optimizer is independent to the runtime

engine, supporting broader runtime backends can be interesting future work.
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Table 5.4: Four workload and infrastructure setups. We use m ˆ n to denote that there exists m servers, each has n vCPUs.
Dataset VQA AICity
Setups Objectives Infras Objectives Infras

small: Accuracy: 0.55, Edge: 1x4, 1x8, 1x16, Accuracy: 0.65, Edge: 1x4, 1x8, Hub: 1x16, 1xV100,
(5 nodes) Throughput: 9 rps. Cloud: 2xV100. Throughput: 3.5 fps. Cloud: 1xV100.
medium: Accuracy: 0.56, Edge: 1x2, 1x4, 2x8, 1x16, Accuracy: 0.70, Edge: 1x2, 1x4, 1x8, Hub: 1x8, 1x16, 1xV100,

(9 nodes) Throughput: 40 rps. Cloud: 1x48, 3xV100. Throughput: 8 fps. Cloud: 1x48, 2xV100.
large: Accuracy: 0.56 Edge: 2x2, 6x4, 1xV100, Accuracy: 0.70 Edge: 2x2, 2x4, Hub: 4x4, 2xV100,

(15 nodes) Throughput: 60 rps Cloud: 3x8, 3xV100. Throughput: 11 fps Cloud: 3x8, 2xV100.
xlarge: Accuracy: 0.57 Edge: 6x2, 10x4, 2xV100 Accuracy: 0.75 Edge: 6x2, 3x4, 1xV100, Hub: 8x4, 2x8, 2xV100,

(30 nodes) Throughput: 100 rps Cloud: 2x4, 6x8, 4xV100 Throughput: 20 fps Cloud: 1x4, 4x8, 3xV100.
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5.6 Evaluation

We evaluate JellyBean against state-of-the-art techniques for machine learning model

serving with the following goals.

G1 Is it beneficial to use JellyBean for serving ML inference workloads on heterogeneous

infrastructures? We showcase end-to-end accuracy and cost measurements comparing

with relative systems on two real-world use cases.

G2 We measure the effectiveness and cost overhead of the JellyBean processor on various

cloud and physical runtime.

G3 To show that our optimizer is near optimal, we tease apart the usefulness of various

aspects of the JellyBean optimizer in an ablation study and compare with alternative

ML model selection and placement strategies as well as lower bounds.

G4 We study the robustness and flexibility of JellyBean in a sensitivity analysis by varying

the systems and workload settings.

5.6.1 Experiment Setup

Datasets. We consider two realistic machine learning workflows (and associated datasets)

for model inference:

NVIDIA AI City Challenge (AICity) [2] is a public dataset and benchmark to evaluate

tracking of vehicles across multiple cameras. The dataset is divided into 6 traffic intersection

scenarios in a mid-sized US city, which in total contains 3.58 hours of videos collected from

46 cameras. A frame has 1.1MP (megapixels) and 22 objects (cars) on average. The ReID

models are trained on the CityFlowV2-ReID dataset [267], while the object detection models

are pre-trained on the COCO image dataset [151]. We leverage their testing scenario in

our system evaluations. Figure 2.2 demonstrates a typical workflow upon this dataset with

an object detection model, an object Re-identification (ReID) model and the subsequent

tracking modules to derive cross-camera vehicle trajectories.

Visual Question Answering (VQA) [6] is another public dataset containing open-ended

questions about images from the COCO image dataset [151]. The task is to generate an
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answer (from a large set of candidate responses) for an image-question pair. This dataset

has 614,163 questions on 204,721 images. The mean input image resolution is 0.3MP and

the mean input speech length is 1.5sec. The validation set from the original dataset split

is used in our evaluation. Figure 5.1 demonstrates a typical workflow for VQA.

In our offline profiling, we measure the accuracy of 10 model combinations on the VQA

validation set with 121,512 samples, taking 10-20 minutes depending on the model combi-

nations. As for AI City, where test labels are not available, we use the official benchmarking

API [2] to get the IDF1 scores. We profile 20 model combinations, and the profiling takes

1-2 hours depending on the model combinations. We also use reported accuracy on stan-

dard benchmarks whenever available [297, 223, 89]. We note that these are one-time,

per-database costs and can be amortized among different ML workflows later on. We use

P75 efficiency numbers as input to our optimizer to offset runtime variance; our sensitivity

analysis in Section 5.6.4 discusses using other percentiles.

Workload and infrastructure settings. We conduct our experiments on the IBM cloud where

the workload and infrastructure setups are detailed in Table 5.4, where we show the input

throughput in frame/request per second (FPS/RPS). We use the mean per-frame/audio

size from the input dataset in our cost model. We evaluate four setups ranging from small

to xlarge by varying the number and type of available workers for each infrastructure tier

as well as the throughput and accuracy targets. Each compute node represents a virtual

machine as described in Section 5.5 with the number of vCPUs specified (2-48), while each

GPU compute node represents a VM with a 16GB NVIDIA V100 GPU. The memory of

each node ranges from 4GB to 192GB and the bandwidth ranges from 3Gbps to 25Gbps.

In Section 5.6.4, we show experiments when the bandwidth is limited. While the absolute

infrastructure tier configurations may not capture all real-world infrastructure setups (e.g.,

IoT devices with compute ă2 vCPUs), we note that the relative compute power difference

between tiers does capture this. Using these settings strengths our evaluations as our

processor offsets hardware heterogeneity by virtualization and ML compilers (Section 5.5).

We strive to echo real-world scenarios when setting up the base resource costs in our
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experiments; nevertheless, there can be orthogonal factors such as dynamic pricing mod-

els [77]. Hence, we use the unit compute and networking costs based on the pricing catalog

of the IBM Cloud as of April 2022 [94]. The unit costs increases sub-linearly along with the

resources used (e.g., 1 and 1.5 unit costs for 2 and 8 vCPUs respectively, and 3 for V100).

The communication costs among different tiers (e.g., from edge to cloud) range from 0.1

to 0.3 unit cost per GB; for example, direct communication from edge to cloud bypassing

local hubs is more expensive.

We also leverage prior VQA and AICity solutions on top of the benchmarks from [16,

153] and set up the accuracy and throughput targets used in our experiments based on the

profiles of these state-of-the-art solutions. The virtual machines are chosen such that small

and medium aim for low serving costs without edge GPUs, while the larger setups aim for

low latency with edge GPUs available. The later cases also demonstrate how compute can

be moved to the cloud when the edge has not enough compute power.

Evaluation metrics used in our experiment include:

Performance. We report both estimated and actually achieved throughput in one hour, as

well as various overheads incurred by our query optimizer and processor. We also aim for

a system that provides viable trade-offs between accuracy and throughput; we report the

actual accuracy scores on the validation sets described earlier.

Serving costs. We report the compute and networking costs of executing the ML workload

on the infrastructures specified in Table 5.4. We evaluate the costs while varying the target

accuracy and input throughput. For JellyBean and all baselines (described next), we report

the serving costs and other metrics when the system saturates, excluding model loading,

system startup and shutdown time.

Baselines and comparisons. To compare JellyBean (JB) over state-of-the-art ML serving

solutions on heterogeneous infrastructures, we consider the following baselines in our ex-

periments:

Worker assignment strategies. Inspired by geo-distributed database placement [88, 222,

206] and VM placement strategies [71], we compare with using the following model selection
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FIGURE 5.4: End-to-end evaluations of ML serving. We showcase the actual total serving
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medium setup.
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Table 5.5: Cost analysis on the AICity dataset.

Model medium large

Select. Assign. Comp. Net QO Comp. Net QO

JB JB 12.7 8.4 6.5ms 17.0 13.6 7.8ms

LB LB 13.0 8.1 2.1s 17.0 13.6 27min
JB FF 9.0 14.1 3.9ms 12.0 19.1 5.7ms
JB BF 16.0 8.3 3.4ms 20.0 13.5 3.4ms

and worker assignment strategies while using the JellyBean processor5: (1) Best Fit (BF) is

inspired by geo-distributed database optimizers [88, 222] to reduce the networking costs;

it uses the most accurate model and greedily assigns jobs to the cheapest worker on the

same infrastructure tier. (2) First Fit (FF) follows a classic VM placement strategy [206] in

which each operator uses the most accurate model and assign jobs to the cheapest worker

regardless of their location. (3) Lower bound (LB): we compute a lower bound of the serving

cost by enumerating over all possible model choices and worker assignments when keeping

the placement constraints (A2). This baseline showcases the optimality of our solution and

it is worth noting that BF and FF may not follow the networking constraints used in JB and

LB.

End-to-end ML serving. To our best knowledge, there lacks an off-the-shelf solution for

serving ML on heterogeneous infrastructures while supporting the functionalities that Jelly-

Bean can provide. We use the following variants of existing systems to echo the real-world

ML deployments. (1) We perform all computation on a single GPU worker using native

PyTorch to handle the entire workflow. Doing so has the minimum compute overhead from

the software stack beyond PyTorch but has to pay potentially large networking costs if the

workers are on the cloud. By default, we use the most accurate models that are available

and denote PTe as running PyTorch on the edge, pretending that there is a V100 GPU and

counting the GPU costs; PTc runs PyTorch on a cloud V100 GPU, which is equivalent to

PTe plus networking costs. (2) We assume the data is transferred to the cloud and use the

5 We note that Worst Fit placement [206] that greedily puts models on the most expensive location does not
fit in our context.
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most accurate models in a Spark. This baseline leverages all the cloud GPU workers in

each infrastructure setup (Table 5.4) and performs data parallelism upon native PyTorch

wrapped in a map function (SPc).

Model selection. The baselines above use the most accurate models available, since none

of them solves the model selection problem. We will perform in Section 5.6.3 an ablation

study to examine the effectiveness of our proposed model selection strategy, showing the

optimality gap from using brute force.

5.6.2 System Evaluations

System efficiency. We showcase G1 by the the end-to-end evaluations in Figure 5.4 and

Table 5.5 using various workload and infrastructure settings in Table 5.4. Note that in

Figure 5.4, the error bars illustrate the estimated costs using the P50 and P90 profiles

(see Section 5.6.4). ‘X’ indicates unsolvable given 1h of QO time. For Table 5.5, we show

the costs for one hour of input data with input throughput specified in Table 5.4 and the

corresponding query optimizing time (QO). We note a few observations here:

JB demonstrates the best performance with different datasets and setups compared to

the baselines. On VQA, JB saves the total serving cost up to 58.1% compared to the

best-performing baseline (PTc) and up to 5x compared to end-to-end ML systems SPc. On

AICity, JB saves the total cost for up to 36.3% compared to the best-performing baseline

(PTc) and up to 2.1x comparing to SPc.

We showcase the actual throughput and accuracy in Figure 5.5. JB achieved near

1:1 for actual:expected throughput (diagonal line). The results for the large setting is

shown in Appendix C. With increasing input throughput but fixed available infrastructures,

JellyBean successfully trades off throughput with accuracy by picking suitable models.

Comparing JB to LB, we observe a subtle difference in the overall serving costs – with

different input throughput, 94.2% of the chances JB provides a total cost that has less than

1% difference to that provided by LB on AICity. LB requires a large QO time as will be

shown next and becomes unusable – in AICity, medium has 8K choices while large has 7M
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choices.

Figure 5.6 illustrates a qualitative example of the execution plans of JB and LB when

they do not match. JB uses 1x16 worker and a larger ResNet model for feature extraction,

while LB uses 1x2 and 1x8 which leads to a lower cost. BF and FF failed to find overall

optimal execution plans in our experiments; though in some cases, they find plans with low

compute or low network costs solely (e.g., BF with low network cost while FF with low

compute cost in Table 5.5). This can be as expected since their heuristics ignore model

accuracy-efficiency trade-offs and the resource availability on heterogeneous infrastructures.

In most cases, BF and FF have much higher costs than JB; using heuristics that consider

network or compute cost solely is suboptimal. On the other hand, model selection greatly

helps to reduce the overall costs, especially when the accuracy target is lower. PTc and SPc

use homogeneous GPU computing, which results in lower compute costs than JB yet larger

networking costs since the raw data must be transferred from the edge. SPc exhibits more

overhead as compared with PTc [169]. PTe is a hypothetical baseline that assumes strong

GPUs on the edge, and thus leads to minimum compute costs at zero networking cost.

In real-world applications, with no resource constraint, users should adopt this solution;

however, this is often not true in practice.

Further evaluations in Appendix E show that JellyBean often yields serving costs equal

to or close to the lower bound. We also discuss some failure cases in Section E.2. For

instance, in the case that Assumption A2 is removed.

We observe that the runtime variance is low across all setups; for example, the standard

deviation from five runs on the large setup is 0.003% for AICity and 0.020% for VQA. The

runtime variance on the xlarge setup is reported .

System overhead. Table 5.5 also illustrates G3 – the JB optimizer has a small overhead

with the QO time of JB in a few milliseconds. In comparison, LB uses brute force, which

incurs adverse QO time in larger infrastructure settings (e.g., 27 minutes for large). Other

placement strategies have smaller QO time due to a smaller search space, but the total

serving costs are larger.
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FIGURE 5.6: Comparison of the execution plans of JB and LB on VQA using the medium
setup modified to 20 rps.

We further demonstrate in Table 5.6 the compute overhead of the JB processor, where

E denotes Edge, H denotes Hub, C denotes Cloud, Original denotes the latency with native

PyTorch, QP exec denotes the overhead of executing the operator in the JellyBean query

processor, QP network denotes the overhead of communication. We show the 50th and

90th percentile of various ML operators in native PyTorch and by the JB processor. The

overhead caused by JB processor, as partially been discussed in [185], contains that for

metadata parsing, data (un)packing, network I/O, and task scheduling. The QO latency

is reported on 1x8 virtual CPU node with a Python implementation. Results indicate a

small overhead ranging from a few to 19% upon the native PyTorch executions. This is

significantly smaller that that of Spark which may take up to 300% (as shown in Figure 5.4).

Remark. Our evaluations across various workload and infrastructure setups showed that

JellyBean efficiently computes and deploys execution plans and significantly reduces the

total serving cost of real ML workloads. We believe it is beneficial to leverage JellyBean for

serving ML on heterogeneous infrastructures across a wide range of real-world applications.

5.6.3 Ablation Study

We leverage the medium setting and evaluate JellyBean by sweeping different knobs used

during query optimization. We also demonstrate similar experiments on other setups in

Appendix D.

Input throughput. To demonstrate the scalability of JellyBean and to supplement Figure 5.4,
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Table 5.6: Costs of operators upon the medium setup.

VQA
Node

Orignial (ms) QP exec. QP network

Operator P50 P90 P50 P90 P50 P90

ImgFeat x2E 152.2 161.9 +2.5% +4.1% +1.2% +1.3%
ImgFeat x4E 76.6 82.3 +7.4% +8.1% +3.9% +3.6%
ImgFeat x16E 27.4 29.4 +11.7% +19.4% +6.1% +6.0%

ASR x8E 251.0 297.6 +2.3% +1.0% +0.4% +0.4%
ASR V100C 24.1 26.3 +0.8% +0.8% +0.6% +0.5%

VQA x48C 6.3 8.6 +9.7% +12.6% +4.8% +6.9%

AICity
Node

Orignial (ms) QP exec. QP network

Operator P50 P90 P50 P90 P50 P90

ObjDet x2E 1412 1455 +3.4% +8.2% +0.3% +0.4%
ObjDet x4E 721.0 732.0 +6.4% +8.7% +0.4% +0.7%
ObjDet x8E 451.7 468.3 +3.5% +6.1% +0.8% +0.8%
ObjDet V100H 19.7 20.6 +13.7% +13.3% +8.2% +10%

ReID V100C 8.4 8.7 +6.5% +7.5% +6.0% +6.2%
ReID V100C 8.5 8.8 +6.1% +7.6% +20% +20%

we leverage a fixed target accuracy as in medium and demonstrate how the costs change

when varying the input throughput. Figure 5.7 shows the results. We observe that JellyBean

can keep up with increasing input throughput and is near optimal – in most situations, JB

achieves the same total serving costs as LB. For BF and FF, no valid execution plans can be

found beyond 51 rps and 8 fps (VQA and AICity, respectively).

Target accuracy. To show that JellyBean provides viable accuracy-cost trade-offs, we fix

the target throughput as in medium and demonstrate the total serving costs by varying the

target accuracy. Figure 5.8 shows the results. BF and FF solve only for placement while using

the most accurate models, and thus the costs are constant. For the scenarios we examined,

JellyBean is near optimal across a range of accuracy targets. JB and LB eventually use the

most accurate models, converging with FF for AICity.

Effect of model selection. To examine the model selection strategy used in JellyBean (Sec-

tion 5.4.2), Table 5.7 illustrates an ablation study in which we substitute our model selection

for either the most accurate models or a brute force selection. We also evaluate our model
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FIGURE 5.7: Total serving cost w.r.t. input throughput in JB.

54 56 58
Target accuracy

10

15

20

To
ta

l s
er

vi
ng

 c
os

t

FF
BF
JB
LB

(a) VQA

60 70 80
Target accuracy

10

20

30

To
ta

l s
er

vi
ng

 c
os

t

(b) AICity

FIGURE 5.8: Total serving cost w.r.t. target accuracy in JB.

selection strategy for PTc and SPc. Results show that our proposed model selection is

effective with our JellyBean processor as well as other ML runtimes.

5.6.4 Sensitivity Analysis

We further study the robustness and flexibility of JellyBean (G4) with the following

sensitivity analysis experiments.

Effect of resource over-subscriptions. When there are more resources than needed, espe-

cially on the cloud, can JellyBean handle the workloads without wasting resources? Also,

how do the costs change? We answer these questions by deploying the small workload on

the medium infrastructure (Table 5.4). Figure 5.9 illustrates the results. We observe that,

compared with using the small infrastructure, more resource availability will not signifi-

cantly increase the serving cost for JellyBean with a fixed workload. However, BF and FF
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Table 5.7: Ablation analysis of model selection on the AICity dataset.

Model medium large

Select. Assign. Comp Net QO Comp Net QO

JB JB 12.7 8.4 6.5ms 17.0 13.6 7.8ms
Most acc. JB 14.3 14.0 1.2ms 17.5 19.1 1.3ms
Brute f. JB 12.7 8.4 11.6ms 17.0 13.6 15.0ms

JB PTc 5.3 27.2 N/A 7.3 37.4 N/A
JB SPc 5.8 27.2 N/A 8.0 37.4 N/A

Most acc. PTc 7.6 27.2 N/A 10.4 37.4 N/A
Most acc. SPc 8.7 27.2 N/A 12.0 37.4 N/A

cannot guarantee cost efficiency in such a scenario. This is largely due to their sub-optimal

worker assignment strategies which disregard resource availability. With JellyBean, users

may use large cloud subscriptions without wasting resources.

Base unit network costs. We examine the effect of varying the network costs in a medium

setup, which play a critical role in the total serving costs. Figure 5.10 showcases a change

in cost from 0 to 1 (per GB). Note that on AICity, different lines are near linear after 0.12

and hence we show cropped results. Interestingly, for VQA, we found that the unit network

costs actually have minor effects on the execution plans and the plan changes are subtle –

this is due to a relatively higher compute cost on the cloud, so the computation is kept at

the edge. Meanwhile, on AICity, we use blue dots to show where the plan changes, though

the total serving cost is near linear. We present actual query plans in Figure 5.11 to show

an example plan change when the network cost is reduced by 90% and compute is shifted

to higher-tier workers.

Effect of infrastructure changes. We examine the flexibility of JellyBean when there are

additional resource caps on the medium setup. Specifically, we placed a 10Mbps bandwidth

constraint over all edge devices, mimicking real-world scenarios with limited networking.

The JellyBean optimizer simply applies an additional constraint and limits the search space;

there is no change on the processor and execution engine. Figure 5.12a illustrates the results

and our findings. To reduce network costs, the JellyBean optimizer uses more compute
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FIGURE 5.9: Applying the small workload setup on the medium infrastructures. JellyBean
uses the minimum available resource to achieve an optimal performance.

resources on the edge. The blue curve ends early since no viable solution can be found.

We change the number of workers allocated to different tiers, and observe how the total

serving cost changes (Figure 5.12b). ‘X’ indicates unsolvable inputs. Since there are 9 total

workers in the medium setting, we rank them according their cost and place those with

higher costs on higher tiers (and vice versa). For instance, in the 5:4 case, the edge has

1x2, 1x4, 2x8 workers, and the cloud has 1x16, 1x48, 3xV100. Results show that JellyBean

successfully finds good execution plans in all the settings; more cloud resources does increase

the network costs.

Effect of profiling. In our previous experiments in Section 5.6.3, we leveraged the profiling

of P75 percentiles as inputs to our QO and report actual runtime numbers; doing so gives

extra room for the QO to find valid plans. In Figure 5.4, we also explore the estimated

costs using P50 and P90 efficiency profiles on the error bars. We observe a small variance

– the the actual runtime using P75 in most cases falls in the middle of estimates using P50

and P90. In some cases, the optimizer chooses different plans which leads to discontinuity

of the costs. Overall, we observe that this has minor effects on our end-to-end solution.

5.7 Discussion

Obtaining diverse model choices. The user optionally provides a list of model choices for

each operator in the workflow. Our current prototype depends on this provided model

choices. However, in the future JellyBean can also enrich the choices using off-the-shelf
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execution plan changes.
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model quantization, pruning, and distillation tools. Several tools already exist today, and

it is an active area of research in ML [100, 36, 213, 155, 243, 51] in order to democratize

ML on weak edge devices. To integrate these tools into JellyBean, we can simply invoke

them to derive cheaper models offline (similar to how we profile models for their accuracy

profiles). We acknowledge that running these tools may require us to access the original

training data and labels.

Limitations. As discussed in Section 5.4 and Section 5.5, we used a one-to-one mapping

between the workers and operators. Using a one-to-multiple mapping to consolidate the

operators may further improve the performance and can be an interesting further work to

explore. Doing so may require automatic grouping of the operators. Nevertheless, we have

shown in Section 5.6.3 that our processor already has low overhead.

JellyBean also assumes the heterogeneous infrastructures to have near constant input

requests on the edge devices; this is true for the use cases discussed in Section 5.2 and in

our experiments. Exploring use cases that do not fall into this category, such as security

sensors or cluster telemetries which send only intermittent signals, can be an interesting

future work. Besides, we used one-time profiling and fixed worker costs in our experiments;

quickly adapting to changes in these aspects can also improve the usability of our system.

5.8 Related Work

Edge-cloud systems. Moving compute to the edge can reduce the networking cost and is

used in video analytics to eliminate the need to transfer raw video streams. Chameleon [108]

leverages temporal and spatial correlations to tune frame resolution, sampling rate, detec-

tor model configurations for an optimal resource-accuracy trade-off. In [281], a latency and

energy consumption model is considered for choosing the configuration. Jain et al. [101]

scale video analytics to large camera deployments using hand-crafted rules that leverage

cross-camera correlation to improve cost efficiency and accuracy. Elf [306] applies a content-

aware approach to offload smaller inference tasks in parallel to edge servers. These works

considered a simple edge-cloud infrastructure and used workload-specific optimization tech-
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niques. We support optimizing and running arbitrary ML workflows on a wide range of

infrastructures, both of which are inputs to our optimizer.

ML inference systems. Serving machine learning inference has attracted great attention.

TensorFlow Serving [197] is one of the first serving systems for production environments.

Clipper [41] maximizes throughput under a user-specified latency service-level objective

(SLO), model selection policies are also integrated to provide different cost-accuracy trade-

offs. Nexus [250] automatically chooses the optimal batch size and the number of GPUs

to use according to the request rate and latency SLO. Model DAGs are also considered

in other works [42, 237, 275, 238, 87, 86]. JellyBean differs in two ways. First, we choose

individual models based on input throughput and target accuracy for the entire ML work-

flow. Second, we target at deploying ML workflows on heterogeneous infrastructures, where

prior works focused on either: a) homogeneous cloud datacenters or edge devices only, or

b) heterogeneity within a single tier (i.e., datacenter).

Optimizing ML queries A number of works have been proposed in optimizing ML queries

at either logical- or physical-level. Lu et al. [160] filter data that does not satisfy the query

predicate by using probabilistic predicates. BlazeIt [116] optimizes aggregation and limit

queries for videos. Yang et al. [295] exploit predicate correlations to build proxy models

online to avoid exhaustive offline filter construction. Optimization at physical execution-

level is addressed in some of the ML serving systems that support model DAGs. For

instance, Llama [238] applies a greedy strategy that chooses cost-efficient worker configu-

rations for video analytics pipelines. These works did not consider network cost, because

these systems target pure datacenter deployment scenarios. JellyBean optimizes general

ML workflows jointly at logical and physical levels for a heterogeneous infrastructure across

edges and the cloud.

5.9 Summary

The rise of smart home devices and the Internet of Things opens up the opportunity

for ML serving systems at the level of both the infrastructure and ML workflow to explore
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new trade-offs between accuracy and performance. We build JellyBean, an ML serving to

optimize ML workflows which takes into account the cost, availability, and performance of

the increasingly tiered and heterogeneous infrastructures. JellyBean significantly reduces

the total serving cost of visual question answering and vehicle tracking from the NVIDIA

AI City Challenge compared with state-of-the-art solutions.
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6. Lazarus: Resilient and Elastic Training of
Mixture-of-Experts Models with Adaptive Expert
Placement

In Chapter 5, we explore machine learning inference workflows and how we can use a

system service to atomically deploy and serve them in a heterogeneous environment across

edge and cloud with a cost-efficient execution plan. In this chapter, our focus shifts to

another type of emerging workload and infrastructure: mixture-of-experts (MoE) models

and spot instances. MoE models have increasingly been adopted to further scale large

language models (LLMs). However, training or fine-tuning large MoE models still pose high

resources requirements and result in staggering costs. Spot instances present an opportunity

to significantly reduce training costs [268, 47, 9]. However, frequent preemptions of spot

instances and the dynamic nature of MoE workloads make it challenging to utilize spot

instances. We present our solution, Lazarus, a system that manages and optimizes MoE

models training on spot instances, providing resiliency and elasticity to harness the cost

efficiency of spot instances.

6.1 Introduction

To combat the prohibitive training cost of massive large language models (LLMs), the

sparsely activated Mixture-of-Experts (MoE) models have increasingly been adopted by the

community. Unlike dense layers activating all parameters for a given input, in the MoE

architecture, each input is only forwarded to a subset of multiple parallel sub-modules (i.e.,

experts). The selective activation of parameters leads to sub-linear scaling of computation

with model sizes. Still, training MoE models requires tremendous resources. For instance,

it takes 50 days to train the 540B PaLM model on 6,144 TPUv4 chips [39] .

The likelihood and frequency of failures significantly increase as the scale and duration

of training increase. Even a single failure is costly, as all GPUs are idling until failure is

resolved and failed nodes are replaced. It is reported that failure rates can amount to 44%

for LLM training [83] and slows the training progress by up to 43% [162]. In addition,

most cloud providers offer preemptible (spot) instances that can be leveraged for training
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LLMs with minimized monetary cost, as they offer cost savings of up to 90% compared to

on-demand instances. Preemptions can happens as frequent as every 5~10 minutes in spot

instance environment [268], which are essentially “failures”.

Existing systems for LLM training with quick failure recovery can be categorized into

two classes: in-memory checkpoint based or pipeline-parallelism based. The first line of

works [286, 285] utilizes CPU memory of neighboring nodes to periodically checkpoint

model states. However, they lack elasticity and have to wait for replacement nodes of the

failed ones to recover from failure and continue training, which may not be available for

hours to days until failed nodes are repaired [83]. Especially for training on spot instances,

such new node availability cannot be taken for granted.

The second line of works builds resiliency into pipeline parallelism by taking advantage

of its configurability in stages-nodes mapping [268, 103, 47]. They achieve both resiliency

and elasticity, since they can continue training upon failures without requiring additional

nodes. However, these approaches do not apply to MoE models, as the distributed training

of MoE models include a different parallelism strategy: expert parallelism (EP) [138], where

experts are distributed across multiple GPUs (nodes) and all-to-all communication is used

to dispatch input tokens to GPUs with corresponding experts.

In this chapter, we present Lazarus, a system for resilient and elastic training of MoE

models. Lazarus enables high-throughput training accompanied by a high probability of

failure recovery without restarting from checkpoints. Upon failures, Lazarus quickly recon-

figures the training job and fully utilizes all remaining GPUs (regardless of how many nodes

fail).

Our insight is that adaptively adjusting the number of replicas (GPUs) assigned to each

expert and their placement can improve resiliency against failures and performance due to

imbalanced expert load distribution. Due to the dynamic nature of its architecture, MoE

models suffer from dynamic and imbalanced workload [92, 300, 191]. Tokens are routed

to experts based on the decisions of trainable gate networks. Some experts have more

tokens routed to than others. In traditional EP, all experts are partitioned into equal-sized
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FIGURE 6.1: MoE architecture utilizes expert parallelism for distributed training, yet it
suffers from imbalanced workload due to the dynamic nature of gate networks.

chunks and each chunk is assigned to the same number of GPUs. In contrast, Lazarus

allocates more replicas to popular experts and flexibly assigns them using all available

GPUs. Such flexible expert allocation not only results in performance boosts, but also

leads to better training resiliency and elasticity. As long as a single replica for each expert

remains available, training can continue to progress with all remaining nodes utilized; in

traditional EP, only a multiple of EP size GPUs can be used, which can induce significant

performance degradation even for minor failures.

There are three key challenges Lazarus must address. First, we need a expert allocation

and placement algorithm that takes account of the imbalanced workload, to speed-up expert

computation while maximizing the probability of successful recovery. Second, with our

asymmetrical expert placements in the cluster, how do we efficiently dispatch tokens to

GPUs with corresponding experts and balance their loads? Third, how do we quickly re-

instantiate lost expert replicas and efficiently migrate the cluster to a new placement plan

in response to failures?

To address these challenges, we propose a strategy for allocating expert replicas based

on the load distribution, while maintaining a fault-tolerant threshold to guarantee failure

recovery when a small number of nodes fail. We design a provably optimal algorithm for

placing these replicas based on the idea of maximum rank overlap, to maximize the recovery

probabilities under arbitrary node failures. We develop a CUDA kernel that dispatches to-

114



2000 4000 6000 8000 10000
Iteration

0.00

0.25

0.50

0.75

1.00

Lo
ad

(a) Layer 1

2000 4000 6000 8000 10000
Iteration

0.00

0.25

0.50

0.75

1.00

Lo
ad

(b) Layer 8

FIGURE 6.2: The expert loads on a 16-experts model (GPT-L in Section 6.6.1) The distribu-
tion varies during training and across layers.

kens in parallel with a flexible all-to-all that minimizes inter-GPU communication. During

migration, Lazarus utilizes a greedy strategy to reduce state transfers for efficient reconfig-

uration.

We implement Lazarus in PyTorch. We evaluate Lazarus across MoE models of dif-

ferent scales with both controlled failures and spot instance traces. Our results show that

Lazarus outperforms checkpointing-based DeepSpeed MoE [231], a widely adopted system

for training MoE models by up to 2.3x under infrequent failures and 5.7x under a high failure

frequency, while our evaluation on a real spot instance trace demonstrates a performance

improvement to 3.4x.

In this chapter, we make the following contributions:

• To the best of our knowledge, Lazarus is the first system for resilient and elastic training

of MoE models that enables both quick recovery from failures and full utilization of all

available GPUs.

• We design a provably optimal algorithm for determining expert placement that maximizes

recovery probability in response to uniformly random node failures.

• We implement and evaluate Lazarus with MoE models of different scales under a variety

of scenarios.
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6.2 Background and Motivation
6.2.1 MoE Models and Expert Parallelism

Mixture-of-Experts architecture has been recently applied to scale LLMs due to its high

cost-efficiency, which replaces the dense feed-forward network (FFN) in a transformer block.

MoE employs multiple parallel FFNs called experts. In each MoE layer, a trainable gate

network routes each token to only the top-k experts (k is usually 1 or 2 [138, 55]). As

experts are sparsely activated, MoE enables scaling model parameters without the increase

of the per-token computational cost.

As the size of an MoE model is dominated by the weights of the experts, expert par-

allelism (EP) [138] has been proposed and has become the de facto approach to train

large-scale MoE models. In expert parallel training, the experts of each layer are split into

equal-sized chunks and allocated across multiple GPUs similar to tensor parallelism, while

the input samples are distributed along batch dimension similar to data parallelism. The

number of GPUs required to split the experts is called EP size and such a set of GPUs forms

an EP group. For instance, in Figure 6.1, there are 4 experts and each GPU accommodates

2 experts, therefore it has a EP size of 2. EP can be used in conjunction with other types

of parallelism like data and tensor parallelism.

As each GPU in an EP group only holds a subset of experts, all-to-all communication

is used to dispatch the input tokens to the GPUs with corresponding experts that the gate

network routes to. The computation of the experts are performed on the owning GPUs and

the results are sent back to the original GPUs with a second all-to-all (combine).

The most distinctive feature of expert parallelism is the dynamic nature of gate net-

works. The distribution of tokens routed to each expert can be highly unbalanced depends

on the input data. We plot the evolution of expert loads from a training trace [300]. We

observe that the load of experts is highly skewed, with up to 87% tokens routed to 2 most

popular experts. The load distribution also varies at different layers and training iterations.

The skewed expert loads in MoE training directly translates to imbalance in expert

116



computation. GPUs holding more popular experts takes much longer time to compute

due to large amount of tokens dispatched to them, while other GPUs are idling. Previous

works [92, 191, 300, 82] addresses this challenging by dynamically adjusting parallelism

strategies on a cluster with a fixed number of GPUs. They do not apply in an elastic

environment with changing device membership.

In addition to the problem of imbalanced workload, traditional EP also utilizes a mul-

tiple of EP size GPUs, which may leave some of GPUs idle upon a failure. The waste of

GPUs only grows with increasing number of experts, as more GPUs are needed for a single

EP group, i.e., larger EP size.

6.2.2 Fault-Tolerant and Elastic Training

A growing research effort has been made in resilient and elastic training in recent years,

contributed to the fact that both the frequencies and costs of failures increase as the scale

and duration of training increase. It is reported during the two months training of OPT

175B, around 100+ failures have been encountered [305], wasting over 178,000 GPU hours.

The cost of even one failure is significant, as all the GPUs must wait idle until the failure is

resolved and failed nodes are repaired, which could take hours to days depends on the nature

of failures [83]. To minimize the GPU idling and the resulting economic loss, a training

system must be designed with resiliency in terms of it can quickly recover from failures,

and elasticity in terms that it can efficiently utilize currently available GPU resources to

continue training. Such systems also enable one to leverage preemptible instances on public

clouds to train LLMs with a significant cost savings [268, 47].

Existing solutions for fault-tolerant and elastic training can be divided into two cate-

gories: checkpointing based or pipeline parallelism based. Checkpointing based solutions

periodically store model states to remote persistent storage, which has a significant overhead

both in saving checkpoints and restarting. For instance, checkpointing the model states to

remote storage for MT-NLG takes 42 minutes under a bandwidth of 20 Gbps [258].

Although in-memory based checkpointing [285, 286] has been proposed to reduce the
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FIGURE 6.3: System architecture of Lazarus.

failure recovery overhead, they lack elasticity as they have to wait until replacements of

failed nodes are available to resume training.

To support both elastic and fault tolerant training without the overhead of checkpointing

and restarting, recent attempts [268, 103, 47] have been made in building resiliency into

pipeline parallelism due to its configurability. However, these approaches fail to apply to

MoE models due to the new computing paradigm introduced by expert parallelism.

In summary, existing systems for fault-tolerant and elastic training fail to adapt to MoE

models. Lazarus targets MoE training, utilizing adaptive expert allocation and placement

to address expert parallelism’s inelastic nature while handling the imbalanced expert load

distribution caused by the dynamic gate networks.

6.3 System Overview

Lazarus is a resilient and elastic system for training MoE models. Lazarus speeds-up

training by adaptively allocating expert replicas based on the dynamic expert load distribu-

tion using all available GPUs, while our fault-tolerant expert placement strategy maximizes
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Lazarus’s recovery probability even under simultaneous failures of multiple nodes.

The architecture of Lazarus is shown in Figure 6.3. Lazarus consists of three main com-

ponents: a centralized controller that manages a GPU cluster, an agent process on each

GPU node that spins up worker processes with Lazarus runtime. The controller runs per-

sistently on a (CPU-only) node and it communicates with each Lazarus agent, monitors the

cluster and detects node failures and replenishment. A scheduler in the controller allocates

expert replicas and computes a fault-tolerant placement plan (Section 6.4.1) for all GPU

nodes. The placement is sent to each Lazarus agent to configure the workers. Based on the

placement plan, Lazarus runtime fills up each layer with corresponding expert assigned to

it. Unlike vanilla expert parallelism where all experts are equally replicated, Lazarus as-

signs more replicas and more GPUs to the heavily loaded experts. As the expert placements

becomes asymmetric, Lazarus runtime also contains a CUDA kernel based dispatcher (Sec-

tion 6.4.2) to efficiently dispatch tokens to GPUs with corresponding experts and balance

their loads.

Upon detection of failures, the controller recomputes an expert placement plan using

all remaining nodes and minimizes the number of replicas migrated. Once Lazarus runtime

receives the new plan relayed by Lazarus agent, it dynamically reconfigures the parallelism

setups and retrieves missing model states from other nodes (Section 6.4.3). To handle dy-

namics in workloads, Lazarus agent also periodically collects the expert load distribution

(routing history of gate networks) from Lazarus runtime. The load distribution is commu-

nicated to the load monitor on the controller, which then rebalances the expert allocation

and placement.

6.4 Design
6.4.1 Adaptive Expert Allocation and Placement

Lazarus considers that each GPU can hold a certain number of replicas limited by their

GPU memory, similar to traditional EP. Lazarus speeds-up training by assigning more

replicas to popular experts, corresponding to more computation resources. Note that we
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allow multiple replicas of the same expert assigned to a single GPU, which indicates more

tokens (of the specific expert) can be processed by that GPU, comparing with assigning a

single replica.

However, how the expert replicas are allocated also directly affects Lazarus’s fault re-

siliency. For instance, if an expert is only assigned with a single replica, then as long as

the GPU (node) holding that replica fails, Lazarus cannot recover due to the states of that

expert is lost and have to restart from checkpoints. Moreover, even when the number of

replicas allocated to each expert is fixed, the placement of these replicas determines the

probability of failure recovery. For instance, if all replicas of an expert are all placed on

GPUs in a single node, the loss of that node would lead to an unrecoverable failure. Hence,

when allocating and placing expert replicas, Lazarus should not only consider the imbal-

anced workload to speed-up computation, but also take account of the impacts on fault

tolerance.

Jointly satisfying these two goals is quite challenging due to two reasons. The first reason

is that the search space for both expert allocation and replica placement is exponentially

large, making it infeasible to enumerate over all possible plans. The second reason is that

there is an inherent trade-off between the two goals. On one hand, a balanced allocation of
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replicas over all experts minimizes the probability of unrecoverable failures (combined with

an optimal placement plan); however, it degenerates to traditional EP and defeats the goal

of addressing expert load imbalance. On the other hand, as more replicas are allocated for

popular experts, the probability of failure recovery becomes lower for less popular experts

with fewer replicas.

We divide the problem into two phases and separately consider allocation and place-

ment. In the first phase, we design an expert allocation strategy that balances between

the workload’s expert distribution and fault tolerance. In the second phase, we design an

expert placement algorithm which is theoretically optimal, maximizing the recovery proba-

bility given a fixed expert allocation. In this way, our allocation and placement plan strikes

a balance between the two goals.

Expert allocation. For ease of presentation, we show how expert replicas are allocated

and placed on each node. If a node has multiple GPUs, Lazarus simply distributes the

assigned replicas among all GPUs on that node, as we consider failures at the node level.

We denote the number of nodes as N, the number of experts as E, the number of replicas

each node can hold as c, the total number of tokens routed to expert e as te, the number

of replicas assigned for expert e as re. To speed-up computation, we want the ratio of

replicas assigned to each expert match the ratio of tokens routed to that expert, namely

re
ř

e1 re1
«

te
ř

e1 te1
. Furthermore, for better fault tolerance, we define a fault-tolerant threshold

f , where Lazarus guarantees a 100% probability of failure recovery as long as less than f

nodes fail simultaneously. Hence, each expert is assigned at least f replicas.

Assume that the experts are sorted by number of routed tokens (te) in an ascending

order. We iteratively compute the number of replicas re assigned to each expert e as follows:

re = maxtt
te

řE
e1=e te1

¨ (N ¨ c ´

e´1
ÿ

e1=1

re1)u, f u (6.1)

Our assignment strategy ensures that
ř

e re = N ¨ c, re ě f , re ě re´1. re
ř

e1 re1
«

te
ř

e1 te1
is also

satisfied in most cases for training speed-up under the imbalanced workload. As re ě f ,
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Lazarus guarantees recovery under failures of a small number (ă f ) of nodes.

Expert placement. However, when the number of failed nodes ě f , the probability of

failure recovery differs between different placement plans. Figure 6.4 shows an example of

4 experts and 5 nodes. With the same replica allocation of 4 experts and 4 replicas slots

per node, placement plan A and B differs in recovery probability under 3 node failures. In

plan A, the probability of recovery is 5
10 , as recovery is possible only if the alive nodes are

(1, 2), (1, 3), (1, 4), (2, 4), (2, 5), while there are 10 possible cases. In plan B, however, the

probability of recovery is much higher at 7
10 .

Placement solution for an easier case. We first consider a simpler case where E ď c, which

we can easily derive an optimal placement strategy inspired by the previous example. The

strategy is for the first min(r1, N) nodes we place the first (least popular) expert, for the

first min(r2, N) nodes we place the second expert, and so on. For the vacant positions,

we uniformly place the experts that still have replicas left. In this way, denote the set of

nodes that have the e-th expert as Se. This strategy satisfies S1 Ă S2 ¨ ¨ ¨ Ă SE. Thus the
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recover probability is equal with the probability of the first expert belonging to an alive

node (i.e., any of the first r1 nodes is alive). Furthermore, the first expert belonging to an

alive node is a necessary condition of failure recovery. Thus for any placement plan, the

recovery probability is upper bounded by the probability of any of the first r1 nodes is alive.

Since there are only r1 replicas for the first expert, it can span across at most r1 different

nodes. Therefore, in the case of E ď c, this placement strategy achieves the upper bound

of the recovery probability for all placement plans, guaranteeing its optimality.

The above strategy relies on two principles: (1) scatter less popular experts (with fewer

replicas) across different nodes; (2) maximize the nodes overlapped between the experts.

Letting each expert span across more nodes is always helpful, as the probability of recovering

a single expert only depends on how many nodes hold this expert, regardless of the concrete

set of nodes placing it. On the other hand, maximizing the overlap between experts benefits

recovery by relaxing the conditions on node liveness. Take the first and second expert as

example, if we overlap all the replicas of first experts with the second expert’s replicas

on the same nodes, the two experts’ states will be lost only when all of the first expert’s

replicas are lost. However, if some of the first expert’s replicas are not overlapped with the

second expert’s, the two experts cannot be recovered when either all of the first’s replicas

are lost or all of the second’s are lost.

Placement solution for the more difficult case. When E ą c, the optimal strategy becomes

more complicated. The previous introduced maximum overlap principle cannot be directly

applied due to the infeasibility of overlapping all experts when E ą c. To address this

issue, we partition the experts and nodes both into r E
c s groups. We also modify the second

principle into maximizing the overlap of experts in each group. Furthermore, we constrain

the expert partitions to be consecutive, i.e., 1, ¨ ¨ ¨ , c are in the first group, c+ 1, ¨ ¨ ¨ , 2c forms

the second group, and so on. For the nodes, we divide the first mintN,
řr E

c s

i=1 rc˚(i´1)+1u

nodes into r E
c s groups. The first group has r1 nodes, the second has rc+1 nodes, and so on,

while the last group has mintN ´
řr E

c s´1
i=1 rc˚(i´1)+1, rc˚(r E

c s´1)+1u nodes. For group i in the
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first r E
c s ´ 1 groups, each node contains one replica of expert c ˚ (i ´ 1) + 1, . . . , c ˚ i. For the

last group, each node contains one replica of expert c ˚ (r E
c s ´ 1) + 1, . . . , E. For the vacant

slots, we uniformly place the experts that still have replicas left to place. Our strategy

satisfies Sc˚(i´1)+1 Ă Sc˚(i´1)+2 ¨ ¨ ¨ Ă Sc˚i for different i, which intuitively maximizes the

node overlapping of experts in each group. The recovery of the experts in the i´th group

hence only requires one node in Sc˚(i´1)+1 to be alive, where we define the expert c ˚ (i ´

1) + 1 as the representative of group i. The complete recovery is equivalent to that one

replica of each group’s representative still remains. Our maximum rank overlap (MRO)

placement plan maximizes recovery probability under uniformly random node failures for

any given replica number r. Concretely, we have Theorem 1. The proof can be found in

Appendix F.

Theorem 1. For any MRO plan T and R, given the number of replicas re for each expert e, T

maximizes the recovery probability Pr(
Ť

aPA Cola = [E]), where [E] is the set of experts, Cola is

the set of replicas assigned to node a, A is a uniformly sampled set of R nodes that remain alive.

Here we offer some core ideas of proving the optimality of our solution. We use Figure 6.5

as a motivating example, where E = 4, c = 2. Let us first consider the recovery of the first

c + 1 experts. All possible placement plans of this example can be partitioned into two

types: (1) The first expert and (c + 1)-th expert overlaps. (2) The first expert and the

(c + 1)-th expert do not overlap. Case III in Figure 6.5 represents type (1), Case I and

Case II belong to type (2). For plans that satisfy type (1), from the figure we can see that

their recovery condition for the first c + 1 experts is stricter (comparing Case III to Case

I). This shows the sub-optimality of overlapping the first expert and the (c + 1)-th expert.

For plans that satisfy type (2), since the first expert and (c + 1)-th expert do not overlap,

the recovery probability of the first c + 1 experts is upper bounded by the probability of

recovering both the first and (c+ 1)-th expert, due to necessary condition. Furthermore, the

probability of recovering both the first and (c + 1)-th expert is identical for different type

(2) plans since the first and (c + 1)-th expert do not overlap so the placement position does
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not influence recovery of these two experts. Notably, for Case I (Lazarus), its probability

of recovering the first c + 1 experts equals the probability of recovering both the first and

(c + 1)-th expert since they are the representatives of the two groups. Therefore Case I

achieves optimal for recovering the first c + 1 experts.

Now instead of only considering the first c + 1 experts, we consider all E experts. For

Lazarus, its recover probability for E experts is identical with recovering the first c + 1

experts, since the representatives of the two groups remains the same (in Case I, recovering

(A, B, C) is equivalent with recovering (A, B, C, D)). Due to necessary condition, for any

placement plan, its recover probability on E experts is upper bounded by the probability of

recovering the first c + 1 experts. Recall the optimality of Lazarus on recovering the first

c + 1 experts, thus its also achieves optimal recovery for E experts.

From the previous case we observe that, for @E1 ą c, for the placement plan that

maximizes the recovery of all E1 experts, the placement of the least popular c experts

exactly align the optimal placement plan for the first c experts, and the remaining decision

becomes how to place the left E1 ´ c experts. This makes it possible to obtain the optimal

solution for E1 ą 2c by recursively placing the least popular c experts satisfying maximum

overlap and reducing the problem to a sub-problem of expert number E1 ´ c.

We note that the expert load distribution can be different across layers, hence we com-

pute an expert replica allocation and placement plan independently for each layer. As

the load distribution also shifts during training according to the workload, Lazarus also

periodically rebalances the expert allocation and updates the placement plan.

Now, we have developed the strategy to assign expert replicas to each node (GPUs).

Next, we explore under such asymmetric replica placements, how Lazarus efficiently dis-

patches tokens to GPUs with replicas of routed experts.

6.4.2 Flexible Token Dispatcher

In traditional expert parallelism, each token can be simply dispatched to the GPU that

owns the corresponding expert, as there is only a single replica for each expert within a
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Algorithm 2: Token dispatch algorithm.
Input : N: Number of GPUs; i: Current GPU rank; h: Activation of input tokens

to the MoE block; Re,j: Number of replicas for expert e assigned to rank j;
Te,j: Number of tokens routed to expert e at rank j;

Output: h1: Shuffled inputs for all-to-all dispatch; sj: Number of tokens to
dispatch to rank j

1 for e Ð 0 to E in parallel do
2 re Ð

ř

j Re,j // total #replicas for expert e

3 te Ð
ř

j Te,j // total #tokens routed to expert e

4 pe Ð te/re // #tokens each replica should handle
5 for j Ð 0 to N in parallel do
6 Pe,j Ð ceRe,j // #tokens rank j can process
7 Pe,j Ð Pe,j ´ min(Pe,j, Te,j)

// rank j’s local tokens are prioritized
8 De,i Ð ceRe,i ´ Pe,i // locally processed #tokens
9 for j Ð 0 to N, j ‰ i in parallel do

10 De,j Ð (Te,i ´ De,i)
Pe,j

ř

k‰j Pe,k

// distribute remaining tokens to other ranks
11 for j Ð 0 to N in parallel do
12 sj Ð

ř

e1 De1,j // #tokens dispatched to rank j
13 for e Ð 0 to E in parallel do
14 start Ð

ř

0..j´1 sj1 +
ř

0..e´1 De1,j

15 end Ð
ř

0..j´1 sj1 +
ř

0..e De1,j

16 h1[start..end] Ð (
řj´1

j1=0 De,j1)-th to (
řj

j1=0 De,j1)-th tokens in h that routed to e
17 return h1, s

particular EP group. Concretely, an all-to-all is performed with all ranks (GPUs) in the

EP group sending and receiving the same number of tokens, which is dynamically set to

the maximum number routed to a single expert to prevent token dropping, while unused

slots are padded [231, 92].

With Lazarus’s adaptive expert placement, there are varying numbers of replicas as-

signed for each expert on different sets of GPUs. Therefore, each rank must decides which

rank with the routed expert’s replica to dispatch a token to. The fact that multiple replicas

can be assigned to the same rank (indicating more tokens should be dispatch to it), com-

bined with the difference in expert routing on different ranks, a challenge emerges — how

can we efficiently dispatch the tokens to all GPUs with the routed experts while balancing
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the load? If tokens are poorly dispatched, some ranks could receive significantly more to-

kens than others, hence defeating the purpose of our adaptive expert allocation. Moreover,

the padded all-to-all is no longer viable in our case where a token can be dispatched to any

rank (instead of within a EP group), as padding would dominate the communication.

To address these issues, we design a flexible token dispatcher that efficiently dispatches

each token to a particular GPU and balances the number of tokens routed to each GPU.

With the dispatch schedule computed, Lazarus performs a flexible all-to-all without padding.

Algorithm 2 shows the workflow of the token dispatcher, which is implemented in a CUDA

kernel to process all experts and target ranks in parallel. The basic idea behind Algorithm 2

is that each replica of an expert should compute around the same number of tokens, and

each rank should utilize its local processing “capacity” before dispatching remaining tokens

to other ranks.

Before computing the dispatch schedule, an all-gather is first performed to collect how

many tokens are routed to each expert from all ranks, i.e., Te,j. Te,j is collected so that

the token dispatcher can better balance the load to each GPU based on the expert routing

distribution of all tokens from all ranks, instead of using only locally computed tokens.

In addition, since collective communication operations require synchronization of all par-

ticipant ranks, Te,j is also necessary in computing how many tokens a rank should receive

from each of the other ranks. Since only E integers are collected from each rank, this extra

all-gather imposes negligible overhead, as demonstrated in Section 6.6.5.1. The number of

replicas allocated to each GPU Re,j from the placement plan is also passed to the token

dispatcher.

After Te,j are collected, each rank i independently computes how many tokens it dis-

patches to each of all N ranks, for all E experts. First, for each expert e, the number of

tokens each replica should process is computed in line 4 by evenly distributing all te tokens

routed to e onto all re replicas. The processing capacity of each rank j can then be computed

by multiplying pe with the number of replicas of e that j is assigned (line 6). This capacity

will be prioritized towards tokens computed locally on j. After the remaining capacities of
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all ranks are computed, rank i dispatches the remaining (Te,i ´ De,i) tokens that are beyond

i’s local processing capacity. The number of tokens De,j to dispatch to each rank for e is

calculated based on their residual capacities (line 10).

Since the all-to-all collective operates on a continuous buffer, the token dispatcher has to

reshuffle the input activations h to the MoE block, so that tokens routed to the same expert

and dispatched to the same rank are grouped together. The total tokens sj to dispatch to

rank j across all experts is computed in line 12. In line 13-16, these tokens are sorted by

their routed experts and placed consecutively in h1. The reshuffled activations h1 are then

used in the dispatch all-to-all collective, with sj tokens sent to each rank j. The token

dispatcher also computes how many tokens to receive from each rank j in the all-to-all in a

similar fashion.

At this point, Lazarus has the ability adaptively assign expert replicas and dynamically

dispatches tokens among replicas of routed experts. Next, we discuss how Lazarus efficiently

migrates to a new configuration upon failures.

6.4.3 Efficient Reconfiguration

As discussed in Section 6.4.1, if at least a single replica of each expert still remains upon

failures, Lazarus can recover without restarting from checkpoints. However, the remaining

expert replicas’ distribution could deviate from the desired allocation computed for the

workload, and their placement may be prone to subsequent failures. Therefore, Lazarus

must reallocate expert replicas and efficiently migrate to a new placement plan. Such

migration is also required when Lazarus rebalances the expert allocation and when new

nodes join.

The ordering of nodes in the placement plan is not enforced in the placement algorithm,

as long each node in the plan maps to a physical node in the cluster. However, when migrat-

ing from an old placement plan, such a mapping becomes relevant. It directly determines

how many experts’ states a node needs to retrieve from other nodes, as only newly assigned

ones not in the old placement plan have to be fetched. To reduce the number of replicas
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to shuffle during migration, hence the communication, Lazarus applies a greedy algorithm

that iteratively maps a physical node to a node in the new placement plan that the number

of newly assigned experts is minimized.

After the node mapping is determined, Lazarus schedules the transfers of expert states.

Each node fetches missing states for the newly assigned experts from other nodes that own

them. If multiple nodes require the states of the same expert, Lazarus distributes their

state transfers among all owning nodes, to minimize the overall migration time.

6.5 Implementation

Lazarus is implemented in 4K LoC in Python and 500 LoC in CUDA, building on top

of PyTorch [95] (v2.3) and using components from DeepSpeed [233] (v0.13).

Lazarus controller and agents. We implement the controller and agents using Python’s

asynchronous framework. New agents register with the controller, using a TCP socket for

communication. The controller maintains a global view of node availability, where agents

periodically sending heartbeats for it to detect failures. Upon failures or scaling up with

newly arrived nodes, the controller computes an updated expert placement plan, which

is sent to each agent and relayed to the worker process that uses Lazarus runtime. The

agents also periodically collect expert routing history from each worker and send it to the

controller for expert rebalancing.

Lazarus runtime. Based on the controller’s configuration, our runtime sets up NCCL [189]

communication groups for expert and non-expert gradients all-reduce, as well as all-to-all

in expert computation. We implement data parallelism and expert parallelism with our

adaptive expert placement; however, Lazarus can be extended to combine with pipeline

parallelism using techniques like Oobleck [103], which are orthogonal and complementary

to ours. Upon failures, enqueued NCCL operations time out and the model states are

not updated on the failed step, while a new configuration is received from the agent via

a listener thread. Batched NCCL send/recv primitives are used to transfer states during

migration. For scaling up and rebalancing, Lazarus performs reconfiguration lazily, only
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Table 6.1: Configurations of models used in the evaluation.

GPT-S GPT-M GPT-L

# Layers 12 12 12
Feature dim. 768 1024 1024
# Experts 8 12 16
# Params 521M 1.3B 1.7B

after when the current training step is finished.

6.6 Evaluation
6.6.1 Setups

Testbed. We have five servers in our testbed, each with 2 NVIDIA RTX 3090 GPUs and

a 100Gbps Mellanox ConnectX-5 NIC connected to a single 100Gbps Mellanox SN2100

switch. Due to limited resources, we treat each GPU as a separate node to emulate a

cluster of 10 GPUs. To store checkpoints, we deploy a NFS server on a separate machine,

which is connected to the GPU servers via 10 Gbps NICs.

Baselines. As there is no existing system to support resilient and elastic training of MoE

models, we compare Lazarus against a checkpoint-based baseline using DeepSpeed MoE

(DS) [231], which is a state-of-the-art implementation of MoE training system with both

system-side and model design-side optimization. To evaluate Lazarus’s adaptive expert

placement algorithm and flexible token dispatcher, we also build a fault tolerant baseline

based on DeepSpeed MoE, utilizing efficient reconfiguration module from Lazarus runtime.

We denote this baseline as DS(FT). Similar to Lazarus, if a complete replica of all experts

still exists upon failures, it reconfigures the workers (reassigns EP groups) and retrieves

required model (expert) states from owning nodes.

Workloads. Based on the widely used GPT-2 architecture, we adopt three MoE models of

varying sizes and number of experts, listed in Table 6.1. We use a per-GPU batch size of

4 and a sequence length of 1024 following GPT-2’s setup [55]. For all evaluation, we use

Wikitext-2 dataset [171], top-1 gate and FP16 precision for training.

For reproducibility, we use the routing history trace from SmartMoE [300] artifact to
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FIGURE 6.6: [Single node failure]: Throughput and total trained samples with a single

node fails every 5 minutes.
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FIGURE 6.7: [Single node failure]: Throughput and total trained samples with a single

node fails every 40 minutes.

emulate gate networks’ routing decisions. We use the loads of top experts at each layer to

construct a routing trace for each of the models we evaluate. We set the number of expert

replica slots for each GPU to 6, which is the upper limit based on available GPU memory.

With DS’s traditional expert parallelism, GPT-M can fully utilize all slots, while GPT-S

and GPT-L can only use 4, as the multiple of slots per GPU and EP size must equal to the

number of experts. GPT-S and GPT-M can utilize an EP size of 2, hence DS and DS(FT)

fully utilize all 10 nodes in the cluster, while with 16 experts and an EP size of 4, they

can only utilize 8 nodes on GPT-L. We set the checkpoint interval to every 50 steps for DS

and every 250 steps for DS(FT), unless mentioned otherwise. We set the minimal replicas

per expert ( f ) to 2 for Lazarus so that recovery is guaranteed under common single node

failure scenarios. Lazarus rebalances expert replica allocation every 200 steps.

6.6.2 Controlled Single Node Failures

We first evaluate the performance in a more common case where a single node fails at

a time. We consider both a high failure frequency and a low frequency scenarios, where we

randomly choose a node to fail every 5 or 40 minutes, until only half of the nodes remained.

The same set of nodes are selected to fail in each run for fair comparison. The results are
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shown in Figure 6.6 and Figure 6.7. The throughput is smoothed over a short time window

for visibility. The fluctuation in Lazarus’s throughput is caused by the reconfiguration

after node failures and the periodical rebalance of expert allocations, while the fluctuation

in DS and DS(FT) is contributed to checkpointing, restarting and reconfiguration (only for

DS(FT)). To reduce the overhead of checkpointing for DS and DS(FT) in the low failure

frequency (40 minutes) setting, we increase their checkpoint intervals by 4x to per 200 steps

and 1000 steps, receptively. We also note that using such low checkpoint frequency would

prevent DS from making any effective progress under high failure frequency (5 minutes).

From Figure 6.6 with a failure frequency of 5 minutes, we observe that over the 30

minutes duration of training, Lazarus finished a total of 2926 and 1996 steps, trained

2.8x and 5.7x samples on GPT-S and GPT-L, compared with DS. The performance gains

significantly increase on GPT-L, as the checkpointing and restarting overhead grows with

model sizes. Moreover, as in the GPT-L setting (EP size is 4), 4 nodes are required to hold

a complete replica of all experts for DS and DS(FT), they can only utilize either 4 or 8

nodes, while they can utilize all 10 nodes at the start for GPT-S and GPT-M.

Lazarus also outperforms DS(FT) by 1.4x and 2.8x on GPT-S and GPT-L. On the

smaller GPT-S, there are a large number of replicas for each expert (5 replicas initially),

hence DS(FT) can recover in each failure. However, as the number of experts and EP size

increases on GPT-L, DS(FT) have to restart from checkpoints after failures of both EP

groups.

When the failure is infrequent as shown in Figure 6.7, the performance difference be-

tween Lazarus and DS decreases as the overhead of checkpointing and restarting decrease.

Still, Lazarus outperforms DS by 1.6x and 2.3x on GPT-S and GPT-L. As the overhead of

DS decreases, DS and DS(FT) have similar performance in this case.

We also observe that Lazarus’s throughput tends to monotonically decrease as the num-

ber of nodes decreases, as Lazarus can fully utilize all remaining nodes for training. While

for DS and DS(FT), the throughput experiences steep drops since they can only utilize a

multiple of EP size nodes. We note that the throughput of Lazarus increases in the last 40
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minutes in Figure 6.7. This is because Lazarus no longer enforces a minimal of 2 replicas

for each expert for fault tolerance, as there are not enough slots with 5 nodes left.

Lazarus still outperforms DS by a great margin, even when both of them fully utilize

all 10. For instance, for GPT-M, during the first 40 minutes in Figure 6.7 when no node

fails, Lazarus has a throughput of 45 samples/sec during effective computation (factoring

out checkpoint and rebalance overheads), while DS only reaches 34 samples/sec.

From Figure 6.6, we also observe that compared to DS, DS(FT) sometimes has higher

throughput during effective computation. For instance, for GPT-M, DS(FT) outperforms

DS by 1.6x during the 5~10 minutes window, when they all fully utilize the remaining 8

nodes. This is mainly caused by the highly imbalanced expert loads during the early periods

of training, while DS(FT) progresses much faster without the overhead of checkpoint and

restarting. When we increase the checkpoint intervals by 4x for both baselines in Figure 6.7,

together with the lower failure frequency, such divergence disappears. Instead, for GPT-S

and GPT-M, DS(FT) is slower than DS during the last 80 minutes. In these two cases,

DS(FT) always resumes training by reconfiguring currently used nodes that are still alive.

It does not use previously dropped nodes (due to exceeding EP size of 2), while DS attempts

to utilize all nodes it can when restarting.

Overall, checkpointing and restarting overhead becomes increasingly significant with

larger models and higher failure frequency. Comparing with DS(FT) which shares Lazarus’s

efficient reconfiguration runtime, Lazarus’s adaptive expert placement improves both train-

ing throughput and resiliency.

6.6.3 Controlled Multi Node Failures

Next, we study how well does Lazarus handle simultaneous failures of multiple nodes.

Whether Lazarus can recover from such failures depends on both the expert allocation (i.e.,

how many replicas assigned to each expert) and expert placement, as well as which concrete

set of nodes fail. The allocation and placement changes as the expert load distribution varies

over the duration of training, and it is also different for different layers. Hence, we evaluate

133



Table 6.2: [Multi-node failures]: Recovery overhead of Lazarus under multiple node fail-
ures on sampled cases.

GPT-S GPT-L

step 200 step 4000 step 200 step 4000

# Lost nodes 2 3 4 5

Reconfig time (s) 21.3 34.1 18.2 19.7

# Experts transfer 11 52 160 55

Transfer time (s) 2.3 3.0 7.6 7.8
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FIGURE 6.8: [Multi-node failures]: Recovery probabilities using different expert place-
ment strategies.

Lazarus’s system overhead of recovery by sampling several cases for GPT-S and GPT-L at

different training steps, while we evaluate Lazarus’s placement algorithm by computing the

recovery probability for a model at a given training step. The recovery probability can be

computed by enumerating all possible combinations of failed nodes, as the how experts are

allocated and placed only depends on the expert load at the particular step.

The recovery overhead for sampled cases is shown in Table 6.2, where 2 to 5 nodes are
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FIGURE 6.9: [Spot instance]: Throughput changes in spot instance environment.
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selected to fail at training step 200 and 4000. We report the total number of experts replicas

that need to be transferred between nodes and the time spent on the state transfers. The

weights and optimizer states of each is 63MB for GPT-S and 112MB for GPT-L. We find

that the overhead of state transfers is negligible. This low overhead is mainly contributed

by the fact that required states can be fetched from other nodes instead of the much slower

remote storage, and Lazarus balances the point to point send/recv operations among all

owning ranks of an expert’s states. We also report the total reconfiguration time, from

failure occurrence to training resumption, where state transfers only constitutes a small

portion. Throughout our entire evaluation, we find that each reconfiguration event takes

20~40 seconds. It takes 10~20 seconds for enqueued NCCL kernels to timeout and 5~15

seconds for reconfigure NCCL’s communication groups. We also observe that the placement

plan’s computation take less than 100ms.

To demonstrate the effectiveness of Lazarus’s fault-tolerant expert placement algo-

rithms, we compare it with two baselines: a spread placement strategy which distributes

each expert’s replicas across different nodes in a round-robin fashion, and a compact strat-

egy that packs an expert’s replicas on minimal number of nodes. The recovery probabilities

with respect to the number of nodes failed are illustrated in Figure 6.8. We find that

Lazarus’s placement algorithm greatly outperforms both baselines. For instance, for GPT-

L at step 200, Lazarus has a 41% recovery probability with 4 node failures, compared to

12% of spread placement. We also observe that on the smaller GPT-S when expert loads are

relatively more balanced at later step 4000, compact placement achieves limited recovery

capability with 1 or 2 node failures. However, it completely fails to recover in any failure

scenario on the larger GPT-L with 16 experts.

6.6.4 Spot Instance Trace

We also borrow real spot instances node availability trace from Bamboo [268] to evaluate

Lazarus under both failures and scaling-up. The trace includes both preemption events

and node additions. We replay a representative 80 minutes segment of the availability trace
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collected on AWS EC2 P3 instances. As the original trace is collected on a 32 nodes cluster,

we cap the maximum number of nodes to 10 in our testbed setup. To handle rare cases

where recovery is not possible due to too many nodes failing at the same time, we also apply

periodic checkpointing for Lazarus. We set the checkpoint interval to every 250 steps, same

as DS(FT), for fair comparison. For node additions events, all compared methods wait for

2 minutes to accumulate sufficient nodes before scaling-up, to avoid frequent reconfigurtion

or restarting. The results are shown in Figure 6.9.

Over the 80 minutes duration, Lazarus trained 2.3x and 3.4x samples on GPT-S and

GPT-L, compared with DS. Lazarus outperforms DS(FT) by 1.2x and 1.8x on GPT-S and

GPT-L. We also note that Lazarus’s throughput changes proportionally to the number of

nodes available, as Lazarus wastes no node, while DS and DS(FT) are limited by EP sizes.

Due to the overhead of checkpointing and restarting, DS trained 51% and 48% less

samples than DS(FT). DS(FT) can always recovery from failures for GPT-S and GPT-M,

as it evenly allocates up to 5 replicas to all experts at a cost of reduced throughput. For

GPT-L, however, when there is less than 8 nodes, DS(FT) cannot utilize more than 4 nodes

for redundancy. It has to restart from checkpoint each time, leading to 3~5 minutes of lost

progress.

We observe that only in a single preemption event when 4 nodes are lost at 34 minutes,

Lazarus has to restart from checkpoint. Note that in the original trace, only a maximum

of 19% nodes failed at a time.

6.6.5 Ablation Study
6.6.5.1 Impacts of Expert Load Imbalance

To study how the expert load imbalance in workloads affects both Lazarus’s performance

and fault resiliency, we build a single MoE layer with 8 experts and a feature dimension of

1024. We construct workloads with different expert load ratios. We show the layer forward

throughput in Figure 6.10a. Here, a load ratio of 4:1 indicates that 4x more tokens is routed

to one of the expert than if all experts are evenly routed to.
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FIGURE 6.10: [Ablation Study]: Single layer throughput and recovery probabilities under
different expert load ratios.

We observe that Lazarus’s throughput remains constant as the load ratio changes, con-

tributing by Lazarus’s adaptive expert allocation based on expert load distribution. DS’s

throughput, however, dramatically decreases as the workload becomes more skewed. When

the workload is perfectly balanced (1:1), Lazarus suffers a small overhead due to its flexible

token dispatcher.

We also evaluate the effectiveness of Lazarus’s expert placement algorithm in fault

tolerance as the load distribution changes. Figure 6.10b shows the recovery probability of

Lazarus with varying number of failed nodes on 2:1 and 4:1 load ratios, compared with the

spread placement strategy. We observe that the recovery probability decreases with more

imbalanced workload, as less popular experts are assigned less replicas. Still, Lazarus’s

placement algorithm is much more effective than spread placement, while our previous

evaluation demonstrates the increased throughput is worth the effort of skewed expert

allocation.

6.6.5.2 Running Time Breakdown

We breakdown the running time on the spot instance trace from Section 6.6.4 in Fig-

ure 6.11. Both Lazarus and DS(FT) has much more time spent in effective computation,

benefiting from efficient reconfiguration module in Lazarus runtime, while over half of the

time is spent on checkpointing and restarting (fallbacks) for DS. The reconfiguration and
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FIGURE 6.11: [Ablation Study]: Running time breakdown of GPT-S and GPT-L on the

spot instance trace.

rebalance overhead of Lazarus is much smaller than restarting, accepting for less than 10%.

We also find that DS(FT) can recover in all cases on GPT-S, yet it suffers 27% restarting

overhead on GPT-L. Despite similar effective time, Lazarus outperforms DS(FT) by 1.8x in

terms of total trained samples, contributed by our adaptive expert allocation and flexible

token dispatcher.

6.7 Related Work

MoE training systems Extensive studies have focused on optimizing MoE training. A

series of works [231, 251, 107, 140, 154, 192] optimize the all-to-all communication per-

formance. Another line of works design different MoE algorithms and architectures [231,

192, 142, 313, 317, 318, 37]. Various system optimizations have been proposed to deal with

the imbalanced workload. For example, Tutel [92] and SmartMoE [300] propose dynamic

parallelism switching; FasterMoE [82] and FlexMoE [191] also utilize the idea of expert

replication. However, these works all focus on speeding up training on a fixed-sized cluster,

while Lazarus considers an elastic environment where resiliency and quick reconfiguration

is crucial. Many of these optimizations can also be integrated to Lazarus.

Fault-tolerant and elastic training. Early efforts in elastic training focus on small models

trained with pure data parallelism. TorchElastic [273] restarts a job upon node member-

ship changes. Elastically allocating resources among multiple jobs have also been explored
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in [224, 311, 91, 75, 141]. However, they do not work for modern LLMs which are frequently

well beyond a single GPU’s memory capacity. To enable efficient training of large models,

in-memory checkpointing has been proposed in [285, 286], which lack elasticity and require

replacement nodes to resume training. In particular, Gemini [286] designs a strategy for

placing checkpoints in CPU memory across machines to maximize recovery probability.

However, it assumes each GPU’s checkpoint has the same number of replicas, hence does

not apply to our expert placement problem, where different experts have different number

of replicas. Systems supporting both resilient and elastic training of LLMs [268, 103, 47]

are all based on pipeline parallelism, utilizing its flexibility in stage-device mapping. These

works are orthogonal and complementary to Lazarus, where we target expert parallelism

introduced in MoE.

6.8 Summary

This chapter presents Lazarus, the first system for resilient and elastic distributed train-

ing of Mixture-of-Experts (MoE) models. Lazarus adaptively allocates replicas based on the

expert routing distribution of the workload to speed-up training. With a proven optimal

expert placement strategy, Lazarus maximizes the probability of failure recovery. Upon fail-

ures, Lazarus efficiently migrates to a new expert placement plan with all remaining GPUs

fully utilized. Our results show that Lazarus outperforms state-of-the-art checkpointing

based MoE training systems by up to 5.7x under frequent node failures and 3.4x on a real

spot instance trace. We will open source Lazarus.

6.9 Acknowledgement

The Lazarus project is in collaboration with Wenjie Qu. Wenjie contributed to the

algorithm designs while I focused on the system part.

139



7. Conclusion
The growing scale and complexity of today’s distributed workloads have driven appli-

cation developers and infrastructure operators to increasingly demand cost efficiency and

manageability, in addition to performance. Existing systems struggle to meet these goals,

contributed by the detachment of workloads to the infrastructure, and the new deployment

options introduced by new types of workloads. In this dissertation, we present our vision

and a comprehensive, four-part approach to achieve these goals. I argue that decoupling the

implementation of communication primitives and the control of deployment strategies from

distributed applications can improve their performance, cost efficiency, and manageability.

To improve performance and manageability, on the lower-level datacenter communi-

cation side, we decouple the implementations of common communication primitives from

libraries linked to user applications into managed systems services. In Chapter 3, we present

mRPC, which decouples RPC marshalling and policy enforcement into the mRPC system

service, providing policy flexibility and availability without the overheads from sidecars. We

introduce MCCS in Chapter 4, which decouples the implementation of various collective

communication algorithms into a service provided by the cloud, enabling topology-aware

and cross-application optimization of collective strategies, while adding more management

features like quality of service and network-aware traffic engineering.

To improve performance and cost efficiency, on the higher-level deployment side, we

present systems that decouple the control of the workload deployment from applications.

In Chapter 5, we present JellyBean, a system that serves machine learning workflows on het-

erogeneous infrastructure across edge and cloud, optimizing worker assignment and model

selection to reduce serving costs. In Chapter 6, we implement Lazarus, a system that en-

ables resilient and elastic training of mixture-of-experts (MoE) models on spot instances,

taking advantage of their cost efficiency.

Collectively, these systems optimize the deployment of distributed workloads, improv-

ing performance, increasing cost efficiency and achieving better manageability. These tech-

niques also lay the foundation towards a more flexible and resource efficient distributed
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infrastructure in the future.

7.1 Future Directions

In this dissertation, we present systems that independently optimize the two factors: (1)

lower-level communication and (2) higher-level application deployment. Looking ahead, I

believe cross-layer optimization that jointly considering these two factors will further push

the boundaries for performance, cost efficiency and manageability. In the following section,

we will explore two potential future directions towards this goal.

Co-optimization of collective strategies and parallelism configurations in ML training.

Today’s ML training is increasingly bottlenecked by communication as model scales, which

accounts for 30% to 95% of the overall training time [27, 283]. MCCS can improve train-

ing performance through optimizing the collective communication strategies and improving

the performance of collectives. However, MCCS imposes no control on the communication

paradigm in the training process, which is determined by how the model is parallelized

on the cluster. Different parallelism techniques have been developed, and they have dif-

ferent communication patterns. For example, data parallelism uses AllReduce operations

to synchronize gradients [143], while pipeline parallelism uses point-to-point send and re-

ceive operations to exchange activations between pipeline stages [188]. As large language

models (LLMs) have scaled to hundreds of billions or even trillions of parameters [289,

156], they are often trained with a combination of multiple types of parallelisms. Tuning

these parallelism configurations is shown to deliver significant improvements in training

performance. As both the lower-level collective strategies and higher-level parallelism con-

figurations greatly impact training performance, a system service that manages both would

not only enforce how a collective is implemented, but also which collectives are issued,

opening up further opportunities for performance optimization and reducing training costs.

Co-optimization of communication services and job schedulers in multi-tenant data-

centers. As mRPC and MCCS only manage the data plane in a datacenter, they have no

control on which sets of nodes a workload is deployed on. MCCS only attempts to optimize
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the collective strategy given the sets of participant nodes. However, how the workloads

are placed also greatly impact the communication performance [230]. For instance, modern

datacenters are often oversubscribed, if a communication-intensive workload is scattered

across nodes under multiple racks, it could leads to significant reduced inter-host signifi-

cant. A future research avenue is to jointly optimize the job scheduler’s workload placement

and the strategies used by the communication services, further improving performance.
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Appendix A. Evaluating mRPC with Full gRPC-style Mar-
shalling

As gRPC uses protobuf [221] for encoding and HTTP/2 as the payload carrier, it has a

memory copying and HTTP/2 framing cost. On the other hand, mRPC is agnostic to the

marshalling format. Although mRPC’s default marshalling is zero-copy and is generally

faster than gRPC-style marshalling, our main goal is to show that we can eliminate the

redundant (un)marshalling steps while enabling network policies and observability for RPC

traffic.

To isolate the performance benefits of using zero-copy marshalling and reducing the

number of (un)marshalling steps, we evaluate mRPC with full gRPC-style marshalling

(protobuf + HTTP/2). We implement an mRPC variant that applies encoding (decoding)

code generated by the protobuf compiler and HTTP/2 framing for inter-host mRPC service

communication.

We conduct the same large RPC goodput experiment in Section 3.7.1 on TCP transport.

The results are presented in Figure A.1. The error bars show the 95% confidence interval,

but they are too small to be visible. We find that mRPC achieves performance comparable

to gRPC after switching to using protobuf + HTTP/2. With full gRPC marshalling, mRPC

still performs 2.6ˆ and 3.7ˆ as fast as gRPC + Envoy in terms of goodput and goodput

per core. This is because mRPC reduces the number of (un)marshalling steps. The small

RPC rate and scalability of mRPC with gRPC marshalling is also shown in Figure A.2,

where the error bars show the 95% confidence interval. Since encoding small RPCs with

protobuf is relatively fast, the trend to the rate and scalability is similar to Figure 3.5a.
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FIGURE A.1: Microbenchmark [Large RPC bandwidth]: Comparison of large RPC band-
width where we use HTTP/2 and protobuf (PB) marshalling for mRPC.
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and CPU scalability where we use HTTP/2 and PB marshalling for mRPC.
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Appendix B. Extended Evaluation for DeathStarBench in
mRPC

We report the P99 latency of DeathStarBench in Figure B.1, comparing gRPC with

Envoy and mRPC. A null policy is applied for mRPC. The result is similar to the comparison

of median latency in Section 3.7.4. mRPC speeds up gRPC+Envoy by 2.1ˆ in terms of

end-to-end P99 tail latency.

We also evaluate gRPC without proxy and mRPC without any policy enforced. Fig-

ure B.2 and Figure B.3 show the results for mean latency and P99 tail latency. We observe

that mRPC speeds up gRPC by 1.7ˆ and 1.6ˆ, in terms of mean latency and P99 tail

latency. Communication costs are substantial in the DeathStarBench applications, and

thus reducing the communication latency can improve end-to-end application performance.

This is consistent with the original DeathStarBench paper’s observation [62].

We further compare the memory usage of gRPC and mRPC. The peak memory con-

sumption of gRPC and mRPC in DeathStarBench applications is illustrated in Figure B.4.

For mRPC, we report the user application side memory usage, which also includes all the

memory pages shared with the mRPC service. We observe that mRPC does not incur

notable memory overhead compared to gRPC. On the other hand, we find a small and

constant memory footprint of mRPC service across all machines at around 9 MB.
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FIGURE B.1: DeathStarBench: P99 latency of in-app processing and network processing
of microservices, respectively. gRPC with Envoy and mRPC are compared.
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Appendix C. Extended System Evaluation of JellyBean

We illustrate the actual throughput and achieved accuracy with varying input through-

put on the large setting in Figure C.1. Again, we find that JellyBean’s actual throughput

mostly reaches the target throughput. In some cases, the achieved throughput is slightly

lower than the target (<2% lower). This might be contributed by the performance variation

of the vCPUs on IBM cloud at different time-of-day, as we observed.

Here we also report the runtime variance on the xlarge setup. The standard deviation

of the serving cost across 5 runs is 0.122% for AICity, and 0.028% for VQA.
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FIGURE C.1: Achieved throughput and accuracy given input throughput on the large
setup.
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Appendix D. Extended Ablation Study of JellyBean

Here we demonstrate how the serving costs change with respect to input throughput

and target accuracy for JellyBean and the compared baselines in small and large setups.

The results on the small setup are shown in Figure D.1 and D.2, while the results on the

large setup are shown in Figure D.3 and D.4. We do not report the serving costs for LB on

the large setup, as they could not find the solution in a reasonable amount of time. From

the figures, we observe that JB consistently outperforms BF and FF, and achieves the same

or similar serving costs compared with LB on the small setup.

We also showcase the effect of model selection on the VQA dataset in Table D.1. The

results again demonstrate the effectiveness of JB’s model selection strategy, as well as its

effectiveness with other ML runtimes.
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FIGURE D.1: Total serving cost w.r.t. input throughput in JB on the small setup.
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FIGURE D.2: Total serving cost w.r.t. target accuracy in JB on the small setup.
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FIGURE D.3: Total serving cost w.r.t. input throughput in JB on the large setup.
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FIGURE D.4: Total serving cost w.r.t. target accuracy in JB on the large setup.

Table D.1: Ablation analysis of model selection on the VQA dataset.

Model medium large

Select. Assign. Comp Net QO Comp Net QO

JB JB 6.2 1.3 20.8 ms 11.3 1.6 29.3ms
Most acc. JB 9.1 8.8 2.3ms 12.1 6.0 3.1ms
Brute f. JB 6.2 1.3 21.3ms 11.3 1.6 30.0ms

JB PTc 4.0 12.2 N/A 6.0 18.4 N/A
JB SPc 15.8 12.2 N/A 23.7 18.4 N/A

Most acc. PTc 5.8 12.2 N/A 8.8 18.4 N/A
Most acc. SPc 19.3 12.2 N/A 29.0 18.4 N/A
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Appendix E. Discussion on the Performance of JellyBean

We employ greedy approaches in the JellyBean query optimizer for both model selection

and worker assignment. In this section, we further analyze: 1) why JellyBean often provides

execution plans that are competitive with the lower bound in practical configurations, and

2) properties of configurations for which JellyBean may generate worse execution plans.

E.1 Why JellyBean performs well in practice

For most cases in Section Section 5.6, JB has a total serving cost close to LB, even though

JB utilizes a greedy strategy. The small performance gap is due in part to the workflow

properties and infrastructure configurations. On the infrastructure side, lower infrastruc-

ture tiers generally have fewer, less-capable workers than higher tiers; additionally, lower

tiers have a reduced communication cost compared to higher tiers due to their proximity

to the data sources. With Assumption A2, our worker assignment algorithm starts to as-

sign workers from lower tiers considering both compute and communication costs. On the

workflow side, the output accuracy of ML operators generally increases monotonically with

respect to the improvement of the input quality; our beam-search leverages this property

to find feasible model assignments.
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FIGURE E.1: We compare the total serving costs when Assumption A2 is relaxed. We also
illustrate the minimal accuracy of the feasible model assignments in JB
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E.2 Failure cases in JellyBean

Here we discuss properties of workflow scenarios and infrastructure configurations that

can lead to our greedy strategies falling short and thus delivering less-than-optimal execu-

tion plans.

First, in some workflows, downstream operators may require less compute than up-

stream operators (i.e., those closer to the data sources). If the communication cost is not

prohibitive, either as a result of the infrastructure cost or the bandwidth requirements,

placing the upstream operators on the cloud and downstream operators on the edge may

make sense. However, due to our Assumption A2, this placement is prohibited as we assume

that information only flows in one direction from lower to higher tiers. Given this assump-

tion, workers on higher tiers should be assigned conservatively as their assignment restricts

possible assignments for downstream operators in the workflow. Our greedy strategy shares

this philosophy, as it only considers higher tiers when the overall unit cost is cheaper (or

when workers on lower tiers are exhausted). In these cases, we find that removing A2 can

lead to a reduction in total serving cost for the lower bound. In Figure E.1a, we analyzed

the total serving cost of JellyBean (JB) compared to a lower bound without A2 (LB/A2)

using the medium setting for VQA. Comparing to Figure 5.7a, we see a larger gap between

JB and LB, as JB has up to 66% higher cost than LB (among the cases that LB outputs

different execution plan after removing Assumption A2). We also compare the execution

plans generated by JB and LB, when the assumption is removed. The plans on medium

setting at 25 rps input throughput are shown in Figure E.2. As we can see, LB places the

QA operator backward using a x4 worker on edge. Nevertheless, Assumption A2 is still

valid in most of the test cases in our main experiments.

Second, in some edge cases, larger models for an operator may not necessarily lead

to accuracy improvements. Due to the constant expansion factor in our model selection

beam search, JB may fail to discover the model with accuracy right above the user-specified

threshold. We explore the minimal accuracy of feasible model selections made by JB on
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AICity in Figure E.1b; we find that in the AICity workflow, the largest ReID model variant’s

accuracy is consistently lower than some smaller variants.

Third, in some infrastructure setups and workflows, smaller workers may also have lower

unit compute cost. JB may then over-provision workers to operators, as it assigns workers by

greedily picking the one with the lowest unit cost. In Figure E.3, we zoom in on Figure 5.7

to focus on cases where JB has a higher cost than the lower bound (which are less obvious

in the original figure). We found that in these scenarios, JB over-provisions workers to some

nodes due to its greedy strategy of iterative worker assignments. A visualization of the

assignment in Figure E.4 shows that JB uses one more worker than necessary for speech

recognition, since it assigns the x2, x4, and x8 workers before the x16 (thus forcing the

question answering operator to execute on the cloud). For CPU workers, this is due to the

fact that while the unit cost scales directly with increasing number of cores (i.e., x4 is half

the cost of x8), the speedup in execution time does not.

There are some other uncommon scenarios in which JB could generate sub-optimal

execution plans. For instance, there might be some workflows where an operator’s output

accuracy may not monotonically increase with the input accuracy. Under this circumstance,

the beam-search strategy in model assignment may fail to discover feasible assignments.

Some models may not have stable performance ranking across different workers (e.g., a

model executes the fastest compared to other variants on GPU, while being the slowest on

CPU); in this case, using a worker-agnostic cost in the model assignment is not sufficient.
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Appendix F. Proof of Optimality of the MRO Placement
Plan in Lazarus

Recall the setting of our placement problem, we have N nodes, E experts, each node

can hold c expert replicas. The i´th expert has ri replicas. Assume there are R nodes

alive simultaneously, we want to find a placement plan that maximizes the probability of

recovering all the experts when the R alive nodes are sampled uniformly. We denote [k] as

the set of t1, 2, ¨ ¨ ¨ , ku. We use integer matrix T P NcˆN to denote the placement plan, Tij

represents the expert placed at node j’s i-th slot. T satisfies the following properties:

Tij P [E], @i P [c], j P [N]

rk =
c

ÿ

i=1

N
ÿ

j=1

1Tij=k, @k P [E]
(F.1)

Without loss of generality, we assume r is sorted in the ascending order, r1 ď r2 ď ¨ ¨ ¨ ď rm.

Let Colj denote the set composed of elements in the j-th column of T(removing duplicates),

j = 1, ¨ ¨ ¨ , N. Let A be the set of R random columns that are alive, A is uniformly sampled.

Our goal is:

maxPr(
ď

aPA

Cola = [E]) (F.2)

Theorem 1. The maximum rank overlap placement plan (MRO plan) is defined as follows: [N]

could be partitioned into r E
c s disjoint subsets: |Si| = r1+(i´1)˚c, i P [r E

c s ´ 1], |S
r E

c s
| = mintN ´

řr E
c s´1

j=1 r1+(r E
c s´1)˚c, r1+(r E

c s´1)˚cu, such that, for @i P [r E
c s], j P Si, t1 + (i ´ 1) ˚ c, ¨ ¨ ¨ , minti ˚

c, Euu Ď Colj. We prove that any MRO plan T maximizes Pr(
Ť

aPA Cola = [E]).

Proof. We first consider the simple case of E ď c.

Under this case, if N ď r1 + R ´ 1, by Pigeonhole principle, apparently we have

Pr(
Ť

aPA Cola = [E]) = 1 for any MRO plan.
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Otherwise N ď r1 + R ´ 1, then |S1| = r1. For any placement plan T, the probability

of recovering all experts is upper bounded by the probability of recovering expert 1:

Pr(
ď

aPA

Cola = [E]) ď Pr(1 P
ď

aPA

Cola) (F.3)

For any placement plan T, the probability of recovering expert 1 satisfies:

Pr(1 P
ď

aPA

Cola) ď 1 ´
(N´r1

R )

(N
R)

(F.4)

For any MRO plan, by definition, we have:

t1, ¨ ¨ ¨ , Eu Ď Colj, j P S1 (F.5)

Therefore,

Pr(1 P
ď

aPA

Cola) ě Pr(
ď

aPA

Cola = [E]) ě 1 ´
(N´r1

R )

(N
R)

(F.6)

Combining Inequality F.4 and Inequality F.6, we have: for E ď c, any MRO plan maxi-

mizes Pr(
Ť

aPA Cola = [E]) and thus is optimal.

To prove the case of E ą c, we first define two functions PT(¨, ¨, ¨) and Ps(¨, ¨, ¨). PT is

defined as:

PT(M, n, r) = Pr(
ď

aPA

Cola Ě M) (F.7)

where matrix T P Ncˆn, A is r columns randomly sampled from n columns , M is a subset

of [E]. PT is used to illustrate the probability of recovering the subset M from a sub-matrix

T.

For set M, we define M[j] as j-th smallest element in set M. Ps is defined as:

Ps(M, n, r) = Pr(r samples cover the first r
|M|

c
s segments of vector v) (F.8)
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where vector v has length n, with consecutively r
|M|

c s segments, the i-th segment has

length LM,i = rM[1+(i´1)˚c], i = 1, ¨ ¨ ¨ , r
|M|

c s ´ 1, LM,r |M|

c s
= mintn ´

řr
|M|

c s´1
j=1 LM,j, r

r
|M|

c s
u. Ps

is defined to illustrate the recover probability of MRO plans.

We prove the optimality of MRO plan when E ą c by mathematical induction. We

first have the following assumption:

Assumption 1. @m1 ă E, @n1, r1, @ set M1, |M1| = m1,

max
T

PT(M1, n1, r1) = Ps(M1, n1, r1) (F.9)

We want to prove that for @|M| = E, @N, R,

max
T

PT(M, N, R) = Ps(M, N, R) (F.10)

Proving Equation F.10 indicates that any MRO plan achieves optimal recover proba-

bility across all different T.

We first consider the case of |M| ą c. First if R = 1, |M| ą c, for @T, PT(M, N, R) =

0, Ps(M, N, R) = 0, the claim trivially satisfies.

When R ą 1, |M| ą c, for @T, we can transform T to T1 by reordering the columns to

let the columns containing 1 be the first consecutive columns. And @T we have:

PT(M, N, R) = PT1(M, N, R) (F.11)

Let A1 as the set of R columns randomly sampled on T1, St be the set of different values

of column t of matrix T1, C is the largest column ID of T1 that contains 1. By conditioning

on t, we have:

PT1(M, N, R) =
C

ÿ

t=1

Pr(min A1 = t)Pr(
ď

aPA1zttu

Cola Ě MzSt| min A1 = t) (F.12)

If we consider T2 as the sub-table of T1 composed of its last N ´ t rows, we have:

Pr(
ď

aPA1zttu

Cola Ě MzSt| min A1 = t) ď max
T2

PT2(MzSt, N ´ t, R ´ 1) (F.13)
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By Assumption 1, due to St ‰ H, we have:

max
T2

PT2(MzSt, N ´ t, R ´ 1) = Ps(MzSt, N ´ t, R ´ 1) (F.14)

Recall Equation F.12, we have:

PT1(M, N, R) ď

rM[1]
ÿ

t=1

Pr(min A1 = t)Ps(MzSt, N ´ t, R ´ 1) (F.15)

To upper bound PT1(M, N, R), we have to upper bound Ps(MzSt, N ´ t, R ´ 1). We first

prove the following proposition:

Proposition 2. Denote Minc M as the smallest c elements of M. For @M, we have:

Minc M = arg max
St

Ps(MzSt, N ´ t, R ´ 1) (F.16)

It is apparent that removing elements from the recover target set results in an increase

of Ps. Therefore, if |St| ă c, @s ‰ St,

Ps(Mz(St Y s), N ´ t, R ´ 1) ě Ps(MzSt, N ´ t, R ´ 1) (F.17)

Therefore the set St that maximizes Ps(MzSt, N ´ t, R ´ 1) must have c cardinality.

Consider |St| = c. If St is not the smallest c elements of M, we substitute an element

in St with a smaller element obtaining S1
t, |S1

t| = c. By the property of rankings, we have,

LMzS1
t,i ě LMzSt,i, @i (F.18)

Therefore, @S1
t obtained by this way,

Ps(MzS1
t, N ´ t, R ´ 1) ě Ps(MzSt, N ´ t, R ´ 1) (F.19)

We recursively apply this substitution and obtains Minc M, therefore, for @St, we have:

Ps(MzMinc M, N ´ t, R ´ 1) ě Ps(MzSt, N ´ t, R ´ 1) (F.20)

158



Thus finishes the proof of the proposition. This proposition tells us that St = Minc M

maximizes Ps(MzSt, N ´ t, R ´ 1).

By Equation F.15 and Proposition 2, we have,

PT(M, N, R) ď

rM[1]
ÿ

t=1

Pr(min A1 = t)Ps(MzMinc M, N ´ t, R ´ 1) (F.21)

For Ps(M, N, R), consider the left most sample should fall on the first segment, and

the other R ´ 1 samples should cover the set M1, where M1 satisfies the j-th segment of

M1 has equal length with the j + 1-th segment of M for @j. Therefore M1 = tM[1 +

c], ¨ ¨ ¨ , M[|M|]u.

Ps(M, N, R) =
rM[1]
ÿ

t=1

Pr(min A1 = t)Ps(M1, N ´ t, R ´ 1)

=

rM[1]
ÿ

t=1

Pr(min A1 = t)Ps(tM[1 + c], ¨ ¨ ¨ , M[|M|]u, N ´ t, R ´ 1)

=

rM[1]
ÿ

t=1

Pr(min A1 = t)Ps(MzMinc M, N ´ t, R ´ 1)

(F.22)

Substituting Equation F.22 into Inequality F.21, we have:

PT(M, N, R) ď Ps(M, N, R) (F.23)

Now we have proven that Ps is an upper bound of PT. Next, we prove that if T is a

MRO plan, Inequality F.23 can actually achieve equal. For @ MRO plan T˚, we have:

ď

aPA

Cola = [E] ðñ A covers Si, @i P t1, ¨ ¨ ¨ , r
E
c

su (F.24)

For @ MRO plan T˚, we can reorder the columns so that for each column set Si, all

columns in Si are consecutive. We denote the reordered MRO plan as T1, and the ran-
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domly sampled columns on T1 as A1.

Pr(
ď

aPA1

Cola = [E])

=Pr(A1 covers segment with length |Si|, @i P t1, ¨ ¨ ¨ , r
m
c

su)

=Ps(M, N, R)

(F.25)

Therefore for T˚ which is a MRO plan, by the definition of PT in Equation F.7, we have:

PT˚(M, N, R) = Ps(M, N, R) (F.26)

Equation F.26 indicates that DMRO plan T˚, PT˚(M, N, R) = Ps(M, N, R), hence we

prove that, under Assumption 1, Equation F.10 holds when E ą c.

Assumption 1 trivially holds due to the optimality of MRO plan when E ď c.

By mathematical reduction, for @E, @|M| = E, @N, R, we have,

max
T

PT(M, N, R) = Ps(M, N, R) (F.27)

Furthermore, for @ MRO plan T˚ we have:

PT˚([E], N, R) = max
T

Pr(
ď

aPA

Cola = [E]) (F.28)
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