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Abstract
Remote Direct Memory Access (RDMA) has become a popular networking solution in

modern data centers for its capability of delivering high bandwidth, low latency, and high

CPU efficiency. Applications, such as machine learning training and inference, as well

as remote storage, heavily rely on RDMA networks for their inter-host communication.

Entering the new era of artificial intelligence, RDMA is becoming, if not has already

become, one of the core components in modern datacenter network infrastructure.

Although RDMA can deliver extremely high performance, fully realizing this potential

at large scale remains challenging: (1) specific workloads can trigger slow paths on the host

or inside the RDMA NIC (RNIC), leading to unexpected RDMA performance degradation

and even threatening the entire data center network. (2) Severe performance interference

caused by RDMA-specific resource contention prevents applications from efficiently shar-

ing the network infrastructure. We name these two types of issues as RDMA performance

anomalies. These anomalies can lead to catastrophic consequences, such as applications’

performance drop, Service Level Agreement (SLA) violation, head-of-line blocking, and

even deadlocking the entire datacenter. Therefore, they have to be systematically uncov-

ered and effectively addressed before a large-scale RDMA network starts to serve critical

workloads.

Unfortunately, no existing approach can uncover and prevent these anomalies. The

root cause lies in the fact that current methods adopt a traditional network perspective,

overlooking critical aspects unique to RDMA networks, which possess a highly complex

microarchitecture. For instance, RNICs integrate on-NIC processing units and caches to

support their hardware offloading capabilities. The lack of microarchitecture-awareness

limits the effectiveness and efficiency of existing solutions. Moreover, due to the invisibility

of RNIC internals, prior work only has limited, if not none, understanding of the complex

RDMA microarchitecture.

This raises an important question: is it possible for cloud operators to gain insight into

RDMA’s microarchitecture and develop microarchitecture-aware solutions to effectively
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and efficiently uncover and prevent performance anomalies? In this dissertation, I argue

that this is indeed feasible and practical, and being microarchitecture-aware is crucial to

achieving these goals. I propose, design, and implement three software systems to support

this thesis argument from various aspects:

(i) Collie, a performance anomaly detection system that is the first to use qualitative

microarchitecture information exposed by RDMA hardware counters to efficiently uncover

RDMA performance anomalies. (ii) Husky, an end-to-end test suite that reveals RDMA

microarchitecture resource consumption model and identifies unique performance interfer-

ence caused by microarchitecture resource contention in RDMA networks. (iii) Harmonic, a

first microarchitecture-aware solution that monitors and modulate per application’s RDMA

microarchitecture resource usage to prevent performance interference and mitigate perfor-

mance anomalies.

These systems have been comprehensively evaluated across various testbeds, and the

results strongly support the proposed thesis statement. These systems and their evaluation

results have also been successfully transferred to multiple industry collaborators, making

a significant impact on the broader community.
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1. Introduction
In the dynamic realms of cloud computing and artificial intelligence (AI), demands on

underlying computational and network infrastructures have increased exponentially. Data-

intensive applications require extremely high network throughput for efficiency. For ex-

ample, modern large language model (LLM) training tasks involve tens of thousands of

GPUs, and each GPU pair needs to transfer hundreds of gigabytes of data per itera-

tion [47]. This requires constant high network bandwidth for the inter-host GPU commu-

nication. Latency-sensitive applications, such as disaggregated storage and LLM serving

tasks, require ultra-low latency to meet applications’ Service Level Agreements (SLA).

These increasing demands introduce the critical need for network technologies that can

offer both high throughput and low latency.

The Remote Direct Memory Access (RDMA) technology emerges as a compelling so-

lution to these increasing demands, if not the only viable solution. RDMA offloads the

network protocol stack from software (i.e., kernel stack) to the network interface card

(NIC) hardware. In this way, RDMA achieves kernel bypassing and eliminates redundant

context switches to achieve ultra-low latency, such as single-digit microseconds round trip

delay for servers within the same rack. In addition, with hardware offloading, an RDMA

NIC (RNIC) is able to directly read/write host DRAM and GPU RAM in a peer-to-peer

communication. This enables zero-copy transmission and helps to deliver extremely high

bandwidth. For example, RDMA can easily saturate hundreds of Gbps bandwidth using

only a single core and a single connection. These performance benefits are well-suited to

the emerging demands for modern datacenter applications. Therefore, the role of RDMA

as a core component for future datacenter network infrastructure is becoming increasingly

pronounced.
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1.1 Performance Anomalies in RDMA Networks

Although RDMA networks are designed to deliver high throughput and low latency, achiev-

ing these benefits in practice can be challenging. The primary challenge lies in the preva-

lence of performance anomalies in RDMA networks, which can be categorized into two

main types: unexpected performance degradation and severe RDMA-specific performance

interference.

1.1.1 Unexpected RDMA Performance Degradation

Modern data center applications heavily rely on RDMA for efficient inter-host communica-

tion. However, the performance of RDMA networks does not always meet their potential

for high bandwidth and low latency. In some instances, RDMA networks exhibit unex-

pected performance degradation that results in reduced bandwidth or increased latency for

applications. In more extreme cases, such degradation can completely pause applications

or even the entire data center network. For instance, RDMA typically depends on lossless

network fabrics to function optimally. In Ethernet-based data centers, RDMA over Con-

verged Ethernet (RoCEv2) protocol is commonly deployed by leveraging pause frames to

ensure lossless network fabrics. However, specific workloads may cause a receiver RNIC to

send an excessive number of pause frames, leading to head-of-line blocking and potentially

deadlocking the entire data center network [39, 144, 49, 90].

Although individual components like RNICs and GPUs have been extensively tested

by their manufacturers, the complete RDMA subsystems, including the RNIC as well as

other hardware components that it interacts with, may still experience various types of

unexpected performance degradation. These issues often arise from the dynamics between

the RNIC and other elements of the server hardware. For instance, a specific type of

performance anomaly that triggers pause frame storms only occurs under a particular

workload on a server with a certain NUMA configuration and a specific RNIC model.

Despite the complexity, this combination of hardware and configuration is very common
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in real data center production environments.

Data center operators therefore have to conduct holistic tests on the entire RDMA

networks to ensure the networks are anomaly-free and can provide desired performance for

various applications [12]. However, existing test solutions only include microbenchmarks

(e.g., Perftest [108]) and running existing representative applications in a small-scale test

cluster. Unfortunately, these tests are insufficient and cannot uncover the aforementioned

anomalies that cause performance degradation. The main reason is that they only test

simple or existing workloads while datacenter applications’ workloads change over time. For

example, when the configuration for a machine learning training job is changed, the RDMA

communication patterns can change and trigger a new type of performance degradation

that is not covered by any existing workloads. How to effectively and efficiently uncover

these performance anomalies remain challenging.

1.1.2 RDMA-specific Performance Interference

RDMA was originally developed under the assumption of a solitary, trusted user operating

within a single cluster (e.g., HPC clusters). This scenario allowed for optimized perfor-

mance without the need for robust isolation mechanisms between multiple users. However,

modern computing has dramatically shifted towards cloud environments, where infrastruc-

ture is often shared among multiple users, or tenants, to maximize resource efficiency.

In such multi-tenant environments, particularly in public clouds, tenants can range from

well-behaved to buggy, and potentially even malicious.

This evolution raises concerns about the second type of performance anomaly, RDMA-

specific performance interference in clouds. In a multiplexing environment, multiple appli-

cations may share the same RDMA networks and contend on the same type of resources.

Without proper isolation, one application may suffer from significantly degraded perfor-

mance or even denial-of-service attack due to resource exhaustion. Furthermore, the shared

nature of the RDMA infrastructure can lead to inadvertent privacy leaks, where the ac-

tivities of one tenant can reveal confidential information about another. Unfortunately,
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existing RDMA networks lack the necessary mechanisms to effectively prevent such in-

terference. The main reason is that RDMA’s performance interference is very different

from traditional networks because of RDMA’s unique and complex microarchitecture re-

sources. RNIC has many special hardware components (e.g., on-NIC processing units and

on-NIC cache) for its hardware offloading capability. These hardware components are used

to process almost all types of RDMA operations (e.g., set up connections or send/receive

messages). Therefore, when requests issued by different applications heavily consume the

same type of microarchitecture resource, specific types of RNIC internal resources may

become the bottleneck and cause severe performance interference.

1.1.3 Challenges to Finding and Preventing Performance Anomalies

Existing solutions fail to effectively and efficiently find or prevent the aforementioned per-

formance anomalies. The main reason is that all existing solutions adopt traditional net-

work perspectives and neglect RDMA’s unique microarchitecture characteristics. For ex-

ample, cache misses occurring on the RNIC can heavily impact the performance and cause

either unexpected degradation or interference. Additionally, RDMA workloads are highly

diverse, with varying microbehaviors that affect the cache differently. However, current

solutions, whether for uncovering or preventing anomalies, fail to consider and leverage

such microarchitecture-specific information.

This limitation affects both effectiveness and efficiency: testing methods that ignore

microarchitecture information cannot easily identify which workloads are more likely to

trigger bottlenecks on the RNICs, limiting their efficiency and effectiveness; similarly an

anomaly prevention solution (e.g., performance isolation) that neglects RNIC cache cannot

effectively address interference caused by cache contention. Worse still, since RNICs typ-

ically provide only limited visibility into their internal details, existing literature has only

limited, if not none, understanding of the RDMA microarchitecture. To the best of our

knowledge, none of the existing literature has systematically studied RDMA microarchi-

tecture, and no prior work is microarchitecture-aware in either finding or preventing these
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performance anomalies.

1.2 Thesis Contributions

The gaps in existing solutions raise an important question: is it possible for cloud oper-

ators to understand RDMA microarchitecture and integrate microarchitecture awareness

into their solutions to effectively and efficiently uncover and prevent performance anoma-

lies? In this dissertation, I argue that understanding RDMA microarchitecture is feasible

and practical, and being microarchitecture-aware is crucial to find and prevent performance

anomalies effectively and efficiently. To support this thesis statement, I have designed

and implemented three microarchitecture-aware software systems to identify and prevent

RDMA performance anomalies. I have systematically evaluated these systems under var-

ious settings to demonstrate their effectiveness and efficiency, and the evaluation results

have provided strong evidence in support of the proposed thesis.

This dissertation is structured as follows:

Chapter 2: Background

In this chapter, we provide an in-depth overview of RDMA technology, its key mechanisms,

and the emerging challenges it faces in modern datacenter environments. We explore how

RDMA has evolved from high-performance computing (HPC) applications to becoming a

critical component in cloud infrastructures. Additionally, we examine the current limi-

tations, particularly focusing on performance anomalies that disrupt RDMA’s promise of

high throughput and low latency. These limitations highlight the necessity of innovative

solutions to ensure RDMA continues to meet the growing demands of modern datacenter

applications.

Chapter 3: Finding RDMA Performance Anomalies

In this chapter, we take the first step to explore the available microarchitectural information

within modern RDMA networks. We then delve into how to utilize this information effec-
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tively in practice. Notably, we observe that modern RNICs expose a variety of hardware

counters designed for monitoring and diagnostics, including performance and diagnostic

counters. Performance counters typically reflect general RNIC performance metrics (e.g.,

bits per second), while diagnostic counters are often associated with specific unexpected

events, such as on-NIC cache miss rates. These hardware counters reveal critical insights

into the microarchitectural state of the RNIC and can serve as guidance for identifying

performance anomalies. For example, we assume workloads that can drive these counters

to extreme value regions are more likely to cause a performance anomaly.

Based on the above observation, we develop Collie, a performance anomaly detection

system. Collie constructs an RDMA workload space using standard RDMA programming

abstraction (i.e., verbs) and leverages the microarchitectural information provided by these

counters to efficiently detect anomalies in the workload space.

Our experimental results highlight the significant impact of microarchitecture-awareness

on the effectiveness and efficiency of Collie. We evaluate effectiveness using the number of

new anomalies uncovered by the system, as this directly reflects its ability to detect issues

overlooked by existing solutions. Efficiency is evaluated based on search speed and the

required resources (e.g., the number of hosts needed).

We tested Collie across eight different RDMA subsystems, including six types of RNICs

from various manufacturers. Collie operates with minimal hardware requirements, as all

our experiments are conducted in an environment utilizing only two hosts. Collie has

identified 15 previously unknown performance anomalies within only 10 hours, and all the

anomalies have been subsequently confirmed and reproduced by the respective hardware

manufacturers. Moreover, Collie provides valuable guidance for developers to build RDMA

applications free of anomalies, including an RDMA RPC library and an RDMA-based dis-

tributed machine learning framework. The numerous new performance anomalies identi-

fied by Collie highlights the practical value of leveraging microarchitectural information in

anomaly detection, reinforcing the central argument of this thesis.
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Chapter 4: Understanding RDMA Microarchitecture

In this chapter, we take one step further towards demonstrating that a comprehensive

understanding of RDMA microarchitecture is both feasible and essential. To achieve this,

we design and implement a set of microbenchmarks to investigate how different RDMA

microbehaviors uniquely consume RNIC microarchitecture resources. These tests help to

reveal a qualitative model of RDMA resource consumption and yield several key insights.

This model and these insights deepen our understanding of the root causes of performance

interference in RDMA networks. Building on this, we construct a targeted set of workloads

comprising both attacker and victim types. The attacker workloads attempt to exhaust

one specific type of RDMA resources at a time using specific RDMA operations, and the

victim workloads are fine-tuned to be sensitive to different types of resource contention.

This attacker-victim test therefore can cause contention on specific types of resources and

serve as a fine-grained test suite to identify performance interference and evaluate RDMA

performance isolation. We name this entire test suite as Husky.

We apply Husky to study existing commodity RNICs as well as evaluate state-of-the-

art performance isolation solutions. Husky presents three findings that can cause severe

security vulnerabilities for some commodity RNICs and lead to security bulletin tickets and

firmware upgrades [100]. More importantly, Husky victim-attacker test expose weaknesses

across all state-of-the-art performance isolation solutions. These experimental results un-

derscore that a systematic understanding of RDMA microarchitecture is both feasible and

essential. The effectiveness of Husky is demonstrated in a manner similar to that of Col-

lie. By leveraging awareness of the RDMA microarchitecture, Husky identifies numerous

new types of interference previously unrecognized by the entire community, even including

the RNIC manufacturers. In addition, Microarchitecture-aware testing not only uncovers

impactful findings but also highlight the limitations of existing solutions that are agnostic

to RDMA microarchitecture. Furthermore, these results also strongly demonstrate that

a microarchitecture-aware approach is necessary to mitigate performance interference and
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prevent performance anomalies.

Chapter 5: Enabling RDMA Performance Isolation

With a thorough understanding of RDMA microarchitecture in place, we develop Har-

monic, a microarchitecture-aware solution designed to prevent performance interference

and mitigate anomalies. Harmonic leverages hardware-assisted mechanisms to provide ro-

bust performance isolation through two key components: a programmable intelligent PCIe

switch (PIPS) based on FPGA and an RDMA-friendly rate limiter. By utilizing the FPGA-

based PIPS to monitor PCIe traffic between the RNIC and the host, Harmonic captures

all physical address access information. We extend the existing RDMA kernel driver into

a Harmonic kernel driver to obtain the mappings between physical memory addresses to

RDMA related objects of different applications. In this way, Harmonic is able to map PCIe

traffic to per application RDMA behaviors, and therefore accurately monitor per applica-

tion’s RDMA resource usage, including those RDMA-specific microarchitecture resources.

Harmonic then leverages a daemon that repurposes the congestion control rate limiters in

RNIC hardware for our rate modulation. Based on the monitoring results, the Harmonic

daemon generates and sends congestion feedback signals to targeted tenants to modulate

its resource usage, preventing performance interference and performance anomalies.

We apply Harmonic to enhance a commodity RNIC and evaluate its efficacy using

the Husky test suite and real-world applications. In Harmonic, we evaluate its effective-

ness by evaluating its robustness in providing isolation using the Husky test suite. For

efficiency, we measure its performance overheads from various dimensions. Our results

demonstrate that Harmonic significantly strengthens performance isolation across various

types of resource contention and is the first RDMA performance isolation solution to pass

the Husky test suite. Moreover, Harmonic incurs minimal performance overhead. This

success underscores the central thesis of this work: a microarchitecture-aware approach is

essential for effectively preventing performance interference and mitigating anomalies in

RDMA networks.
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Chapter 6: Conclusion

In this chapter, we summarize our key findings and contributions, review the lessons we

have learned, and share the broader impacts of this dissertation. We revisit and validate the

thesis statement and conclude this dissertation by discussing a few future work directions.
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2. Background
Remote Direct Memory Access (RDMA) technology has been widely deployed in high

performance computing clusters for years. RDMA offloads the entire network protocol

stack to the network interface card (NIC) hardware, and provides a new set of abstractions

(e.g., verbs API) to applications, enabling them to directly access the RDMA NIC (RNIC)

and conduct data transfer with minimal involvement of the operating systems.

2.1 RDMA Abstraction

1 // Socket API: Server side

2 int fd = socket (...);

3 // Bind and listen

4 bind(fd , ...);

5 listen(fd, ...);

6 // Accept client connection

7 int clientfd = accept(fd ,

...);

8 // Receive and send data

9 recv(clientfd , buffer , ...);

10 send(clientfd , buffer , ...);

11 // Close connection

12 close(clientfd);

1 // Verbs API: Server side

2 // Create an initial queue pair

3 struct ibv_qp *qp = ibv_create_qp (...);

4 // Connect to the remote end

5 ibv_modify_qp(qp, ...);

6 // Allocate and register memory region

7 struct ibv_mr *mr = ibv_reg_mr (..., buffer , ...);

8

9 // Post receive and send requests

10 struct ibv_recv_wr recv_wr = {..., buffer , ...};

11 ibv_post_recv(qp, &recv_wr , ...);

12 struct ibv_send_wr send_wr = {{..., buffer , ...};

13 ibv_post_send(qp, &send_wr , ...);

Figure 2.1: Comparison between Socket API and RDMA Verbs API.

We use Figure 2.1 to compare the RDMA programming abstraction and the traditional

socket API, illustrating the overall RDMA workflow. When an application wants to perform

RDMA communication, similar to traditional kernel socket-based networks, it first needs to

create a connection. In RDMA networks, the connection exists in the form of a queue pair

(QP), which consists of a send queue and a receive queue. QP allocation and connection

setup still require RNIC kernel driver involvement.

However, RDMA differs from traditional sockets in that applications must register

memory before it can be accessed (either read or write) by the RNIC, as shown in line

7. During memory registration, RNIC kernel drivers pin the memory to ensure it resides

in the host DRAM, translate the virtual addresses to physical addresses, and send these

address mappings to the RNIC hardware. Next, the application can post receive requests
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to the receive queue (lines 10 and 11) and send requests to the send queue (lines 12 and

13), including the target buffer address. Since the RNIC already has the address mapping

information, it can translate the virtual buffer address to a physical address and conduct

DMA operations without involving the kernel or host CPUs. Therefore, subsequent data

transfer operations fully bypass the kernel and avoid excessive memory copies. This enables

RDMA to achieve extremely high bandwidth, ultra-low latency, and high CPU efficiency.

2.2 RDMA Protocols

There are three major protocols used by commodity RDMA networks, and each protocol

is suited to specific network environments.

Infiniband. InfiniBand is a high-speed, low-latency networking standard primarily used

in supercomputers, HPC clusters, and data centers. It runs completely different proto-

cols from link layer to transport layer and is typically incompatible with the well-known

Ethernet-based networks. It provides the best performance in terms of bandwidth and la-

tency but requires specialized hardware and infrastructure, such as specialized Infiniband

switch.

RoCE (RDMA over Converged Ethernet). RoCE is a protocol that allows RDMA

to run over Ethernet-based networks. It extends RDMA’s high-throughput, low-latency

benefits to widely used Ethernet infrastructures, making it accessible for a broad range

of applications without requiring specialized hardware like InfiniBand. RoCE comes in

two main versions, RoCEv1 and RoCEv2. RoCEv1 is an Ethernet link layer protocol and

RoCEv2 extends RoCE to run on top of UDP/IP based network, enabling RDMA traffic

to leverage existing IP-addressing infrastructure.

iWARP. iWARP is another RDMA protocol that supports the standard TCP/IP net-

works. Therefore, iWARP can be easily deployed over traditional TCP/IP network infras-

tructure and is suitable for environments where minimal changes to the network stack are

preferred. However, since iWARP offloads the full standard TCP/IP stack to the hardware,
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it typically has slightly higher overhead in terms of latency and reduced throughput.

2.3 RDMA Transport

To the best of our knowledge, RoCEv2 is the major deployed protocol in modern data-

centers. Therefore, we primarily focus on RoCEv2 protocol in this dissertation. We next

introduce a few core features of RoCEv2 transport.

2.3.1 Lossless Fabrics

RDMA implements all transport capabilities in the hardware. For example, to ensure

reliable communication, RNIC hardware needs to conduct packet retransmission when

packet loss happens. However, due to the limited available resources on the hardware,

even the state-of-the-art RNICs today suffer from poor retransmission performance [12,

137]. Therefore, lossless network fabrics are typically required to avoid congestion loss and

realize high performance RDMA networks. Priority-based Flow Control (PFC) [109, 39]

is the prevalent mechanism to achieve lossless fabrics. PFC works as follows: the RNICs

and the switches enabled with PFCs have PFC thresholds for the corresponding ingress

queues. When the packets accumulating in the ingress queue exceed certain thresholds, the

switch/NIC sends a PFC pause frame to the upstream egress queue, pausing the upstream

port for a duration to avoid packet drops in its ingress queue. PFC uses either Priority

Code Point (PCP) or Differentiated Services Code Point (DSCP) to identify and manage

the priority to pause. In modern data centers, DSCP-based PFC is more prevalent because

it leverages layer 3 information and is easier to manage [39]. It is worthwhile to note that

though typical RDMA deployment relies on lossless fabrics [12, 31, 55], many efforts have

also been made to explore towards empowering RDMA in lossy environments [91, 11].

2.3.2 Congestion Control

Though RDMA networks are typically enabled with PFC to ensure lossless, many conges-

tion control algorithms have been designed to mitigate the triggering of PFCs to prevent
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high tail latency, head-of-line blocking, or PFC pause frame storms. The prevalent ones in-

clude DCQCN [144], TIMELY [90], and HPCC [71]. DCQCN leverages Explicit Congestion

Notification (ECN) to indicate congestion, and reaction points (i.e., receiver) send Con-

gestion Notification Packets (CNP) to senders when seeing ECN-marked packets. When

receiving CNP, a sender throttles its sending rate based DCQCN parameters set on the

host. TIMELY uses round-trip delay as the signal to detect congestion. It adjusts the

transmission rate based on RTT variations, making it responsive to changes in the network

without relying on ECN. HPCC builds on network telemetry to make more accurate and

proactive congestion control decisions. It monitors precise packet-level information using

the in-network telemetry, allowing it to react to congestion faster and with finer granular-

ity compared with other methods. However, it relies on advanced features (e.g., INT) on

switches, which may not be always available in the underlying network infrastructure.

2.4 RDMA Performance Anomalies

While RDMA (Remote Direct Memory Access) offers promising performance improvements

by enabling low-latency, high-throughput communication, achieving this ideal performance

is often hindered by various performance anomalies. These anomalies can emerge from sev-

eral factors, ranging from hardware-specific issues to network congestion, misconfigurations,

or incompatibilities between RDMA subsystems.

There are two broad categories of RDMA performance anomalies: performance degra-

dation and performance interference. Each presents unique challenges to RDMA networks

and must be addressed to fully realize RDMA’s benefits.

Unexpected Performance Degradation. RDMA networks are often deployed with

the expectation of delivering ultra-low latency and high throughput. However, real-world

performance frequently falls short of these expectations due to various anomalies. For

example, specific workloads may trigger hardware issues such as NIC bugs or misaligned

hardware configurations, slowing down the NIC processing pipelines. Consequently, ap-
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plications may suffer from reduced throughput, increased latency, or even get completely

paused. Such degradation can be difficult to diagnose, as they are highly dependent on

the specifics of the RDMA hardware and workload characteristics. We provide an in-depth

description and analysis of this category of anomalies in §3.2.

Performance Interference. RDMA heavily relies on the hardware offloading capability

to achieve high performance. Interference therefore arises when multiple applications con-

tend on the same hardware resource on the RNIC. Unfortunately, modern RDMA networks

provide neither robust isolation mechanism to mitigate such interference among applica-

tions nor clear internal resource model for people to understand the contention. Therefore,

unexpected contention can happen and lead to unpredictable performance drops for some

applications. For example, our Husky project shows that an application can cause another

application’s performance to drop more than 50% by simply calling some control verbs

(e.g., register memory), without sending any network traffic. The detailed description and

analysis of this category of anomalies can be found in §4.2 and §4.3.

2.5 Microarchitecture in RDMA Networks

Compared with the traditional kernel network stack, RDMA networks have complex but

critical microarchitecture. There are several core components.

On-NIC Processing Unit (PU). RNICs have their own on-NIC PUs as the core com-

ponents for the hardware offloading capability. These PUs handle most of the RDMA

requests, including processing the work requests, initiate DMA operations, run the pro-

tocol stack, etc. In addition, these PUs also process the control requests, such as setting

up connections (i.e., QPs), memory registration, as well as error handling. The processing

capacities of these on-NIC PUs and how different operations consume such capacities are

critical to the end-to-end RDMA performance. For example, specific RDMA operations

may trigger the slow paths of these PUs and lead to performance anomalies. Some RDMA

operations may consume more PU cycles than others and cause head-of-line blocking.
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On-NIC Cache. RNICs also equip with on-NIC cache to accelerate request processing.

To process a request, RNIC needs to access various types of metadata, including per-

connection metadata (e.g., sending rate as congestion control status), memory translation

metadata (i.e., the mapping between applications’ virtual address to the actual host DRAM

physical address), etc. These metadata are typically stored on the host DRAM, and cached

on the NIC to accelerate processing. Given the limited size of the cache on the RNICs,

the cache can be full under heavy workloads (e.g., too many connections or wide memory

access range) and the RNIC has to access host DRAM to fetch the necessary metadata

when a cache miss happens. Such cache misses introduce extra PCIe operations for RDMA

operations, leading to resource waste (e.g., PCIe bandwidth) and overheads (e.g., increased

delays).

PCIe Switch and PCIe Root Complex. These PCIe components also serve as cru-

cial roles in RDMA network’s microarchitecture. On the one hand, the increasing RNIC

bandwidth demands more available PCIe bandwidth for its payload and metadata commu-

nication. This makes PCIe bandwidth on either PCIe switch or root complex a potential

bottleneck for the end-to-end performance. On the other, the configurations on these com-

ponents heavily affect RDMA’s behaviors and have huge impacts on the performance. For

example, Access Control Service (ACS) configurations on PCIe switch and root complex

affect how RNIC’s traffic is forwarded during peer-to-peer communication. When enabled,

all RNIC traffic has to be forwarded to the root complex even though it may only need

to go through PCIe switch to the other peer (e.g., another GPU connected to the same

PCIe switch). This can lead to drastic performance degradation and even harm the entire

datacenter.

Unfortunately, prior to the work presented in this dissertation, there was a notable

absence of research that carefully studied and analyzed the microarchitecture of RDMA

networks. As a result, many related performance anomalies remained largely unexplored,

with existing solutions lacking the microarchitecture-awareness necessary to uncover them
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effectively. More critically, no existing solution could prevent RDMA performance in-

terference or the resulting anomalies, as RDMA microarchitecture was neglected. This

gap motivates the development of a systematic approach to understanding RDMA mi-

croarchitecture, identifying performance anomalies, and designing microarchitecture-aware

solutions to mitigate and prevent these issues. Through this work, we offer tools and

frameworks that not only advance academic understanding but have also been success-

fully adopted by industry collaborators to enhance the performance reliability of RDMA

systems.
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3. Finding RDMA Performance Anomalies
In this chapter, we introduce Collie, the first core component of this dissertation. In this

project, we take the initial step to explore the RDMA microarchitecture. We observe that

modern RNICs expose microarchitectural information through hardware counters. We

investigate how to apply this information in anomaly detection and build Collie. Collie

supports the thesis argument that understanding and utilizing RDMA microarchitecture is

essential for effective and efficient performance anomaly detection. For effectiveness, Collie

uncovers many new anomalies that have never been found by prior efforts. For efficiency,

Collie only needs two hosts and can find many more anomalies with much less given time

than random search and other approaches. This work was completed in collaboration with

Yibo Zhu, Huaping Zhou, Zhuo Jiang, Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo.

3.1 Introduction

Data center applications relentlessly demand low packet latency and high CPU efficiency.

That makes Remote Direct Memory Access (RDMA) an appealing solution for cloud

providers and other data center operators. Today, many top companies have already

adopted RDMA in their data centers [144, 71, 39]. RDMA has been integrated into many

application domains, such as graph processing [17, 120], data stores [23, 57], and deep

learning [136, 54].

To deploy RDMA in production, i.e., using RoCEv2 for Ethernet-based data center

network, we need to make sure that the RDMA network performance can meet our expec-

tations, free of performance anomalies like low throughput and pause frame storm [39, 144,

96, 49]. This is important because applications require high-performance RDMA networks

to deliver their service-level objectives (SLO). Furthermore, some abnormal behaviors, like

pause frame storms, can cause catastrophic consequences including deadlocking the entire

data center network [39, 49, 32, 113].

We have encountered the following anomalies in our RoCEv2 production environment:
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• A particular application workload’s performance of the same RDMA NIC (RNIC)

varies substantially on servers with only a slight difference in their PCIe specifications.

• A specific application workload only triggers pause frame storms with certain NUMA

settings on a particular RNIC combined with particular server hardware.

• A particular application workload triggers pause frame storms with only a single

connection on a particular RNIC from a particular vendor.

Although we collaborate with the most reliable vendors and they have conducted ex-

tensive tests on individual devices, the entire RDMA subsystem still has anomalies. The

RDMA subsystem consists of RNICs and other server hardware that interacts with the

RNICs. Our observation is that most of the anomalies are highly related to the interac-

tions between RNICs and rest of the server hardware. Additional integration tests are

thus critical, and we usually conduct these tests on our own because of two reasons. First,

vendors cannot access our highly customized hardware, system configurations, and appli-

cations. Second, anomalies are too critical for the reliability and performance of the entire

data center network, and we cannot completely rely on third parties for testing.

Currently, there are two approaches to conduct tests over the entire subsystem. The

first approach is to run simple test benchmarks (e.g., Perftest [108]) to conduct basic

throughput and latency tests. The second approach is to run a set of representative RDMA

applications. Unfortunately, these two approaches are not able to comprehensively uncover

RDMA subsystem anomalies. The fundamental problem is that these approaches only test

simple or existing workloads. They therefore fail to capture anomalies comprehensively

because real application workloads change over time. In addition, even if an anomaly is

found with an application workload, application developers do not know how to modify

the workload to avoid the anomaly.

Our goal for this paper is to explore the possibility of systematic search for application

workloads that can trigger performance anomalies in RDMA subsystems. Finding these

anomalies for the vendors can help them improve their hardware and thus improve the
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reliability and the performance of the entire data center network. Besides, the systematic

approach can help developers understand the conditions to trigger such anomalies and how

to avoid them by changing application workloads.

To realize this goal, the first question is how to formally define an anomaly? Having such

a definition is difficult because application performance highly depends on the workload

and the hardware. In this paper, we focus on two types of performance anomalies that can

be precisely defined: no PFC pause frames if the network is not congested and throughput

should be bottlenecked either by bits/second or packets/second as in RNIC specification.

Given this definition, we still need to address three challenges. The first challenge is

how to build a comprehensive workload search space. An ideal approach for testing with

the entire RDMA subsystem is to exactly modeling each component and then construct

the search space. However, this is extremely hard for us, given the black-box nature of

RNIC and other hardware components. The second challenge is even after we successfully

construct a comprehensive enough search space, how can we search efficiently? The search

space is inherently very large because RDMA subsystems are complicated. For example,

traffics within an RDMA subsystem can be from/to different memory devices (e.g., main

memory and GPU memory) and the transportation setting for a given workload is various

(e.g., number and type of connections). Conducting tests blindly in such a large space is

inefficient. The third challenge is how to find the complicated triggering conditions of such

anomalies? This is important both during the search and after the search. During the

search, we need the triggering condition to avoid testing similar application workloads for

the same anomaly to speed up the search. After the search, we need to use these conditions

to help developers avoid anomalies.

To this end, we design and implement Collie, the first tool to systematically uncover

RDMA subsystem performance anomalies, with the following three ideas.

Our first idea is to construct the search space from a developer’s perspective. Though

the underlying hardware is various and opaque to us, the narrow-waist RDMA program-

ming abstractions (i.e., verbs) are clearly defined and stable. All application workloads can
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be interpreted as a combination of verbs operations. We carefully analyze the standard

verbs library and the design decisions developers are allowed to make (the request pattern,

how RDMA buffers are allocated, etc.). Moreover, to cover the entire RDMA subsystem,

we analyze all the potential data flows within a given server configuration. In this way,

Collie constructs a comprehensive search space for application workloads in the domain

of RDMA subsystem, including the host of the network traffic (e.g., GPU connected to a

different PCIe bridge from the RNIC, DRAM from a different CPU socket), message sizes,

number of connections, and memory region configurations.

Our second idea is that we can use two sets of counters to guide the search. The first set

is the performance counters (e.g., bits per second), which are provided by all commodity

RNICs and other hardware components. In addition, modern commodity RNICs and other

hardware components provide diagnostic counters (e.g., PCIe backpressure). Diagnostic

counters are mapped to particular unexpected events that happen to the hardware com-

ponents. These counters are currently only used for debugging and monitoring purposes.

Collie uses search algorithms based on simulated annealing to maximize/minimize counter

values to uncover anomalies.

Our third idea is to find the minimal area in the search space that covers the found

anomalies. We call this area (i.e., the conditions to trigger the anomaly) the minimal

feature set (MFS). Collie includes a MFS algorithm to test each feature that an anomaly

has (e.g., number of connections) and generate the necessary conditions set. With the MFS

algorithm, Collie can further improve search efficiency by avoiding redundant tests of the

same area. Also, finding the triggering conditions of an anomaly allows developers to avoid

the anomaly by breaking one of the provided conditions.

We evaluate Collie on 8 different RDMA subsystems, including 6 types of RNICs from

NVIDIA Mellanox and Broadcom, with speeds between 25 Gbps and 200 Gbps. Before

we build Collie, we already know 3 existing performance anomalies by testing with exist-

ing RDMA applications. Collie successfully reproduces all of them and has found 15 new

anomalies. We report these anomalies to the vendors, and all of them are acknowledged.
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7 of them are already fixed by firmware upgrade or detailed configuration following our

vendors’ instructions. We also describe our experience in using Collie to guide an RDMA

RPC library and an RDMA distributed machine learning framework to avoid these anoma-

lies. These experiences show Collie can help data center operators to uncover anomalies

and assist RDMA application developers to implement better applications.
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Figure 3.1: An example of an RDMA subsystem (RNIC internal design and its deploy-
ment environment in a server). Red circles mean potential performance bottlenecks that
can trigger performance anomalies.

This work makes the following contributions:

• We design a developer-oriented approach to systematically construct a search space

of application workloads to find performance anomalies in RDMA subsystems.

• We propose the first work to leverage hardware counters to guide the search for

performance anomalies. These counters do not have proprietary hardware knowledge.

This makes Collie general and useful for all types of RDMA subsystems.

• We develop a simulated annealing based search algorithm and MFS algorithm. These

algorithms speed up search and help developers avoid anomalies.

• We implement Collie, the first tool to help data center operators to uncover and avoid

RDMA subsystem performance anomalies. Collie has found 18 anomalies (3 known
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ones and 15 new ones). We present these anomalies, their mitigation strategies, and

their implications.

3.2 Background

3.2.1 RDMA Subsystem Performance Anomalies

RDMA is increasingly deployed in data centers for applications to achieve high throughput

and high CPU efficiency. An application process can directly communicate through an

RNIC with a remote process without involving either side’s CPUs. RDMA requires a

lossless network to achieve high performance. The default technology to deploy RDMA for

Ethernet-based data centers is RoCEv2 [39, 144]. It relies on Priority-based Flow Control

(PFC) [109] mechanism to guarantee a lossless network: once an ingress queue length

exceeds a threshold, the switch/NIC sends out a PFC pause frame to the upstream egress

queue, asking the egress queue to pause for a duration to avoid ingress queue overflow.

RDMA subsystem performance does not always meet user expectations and can have

severe performance anomaly. According to our production experience, specific application

workloads can trigger hardware bottlenecks of a particular type of RDMA subsystem and

cause the entire subsystem performance to drop drastically. Applications of the same

subsystem will be affected (e.g., throughput drop) and miss the service level agreement.

Worse still, an anomalous RDMA subsystem can send out a large amount of PFC pause

frames, which pauses the priority queue of the corresponding switch port and may threaten

the entire data center network, such as causing head-of-line blocking and PFC deadlocks

[39, 49, 90]

Though the vendors of RNICs and other hardware components (e.g., GPU, mother-

board) have conducted extensive tests on their products, we still find many anomalies in

our RoCEv2 production environment. The fundamental reason is that RDMA performance

is highly related to the entire RDMA subsystem, consisting of both RNIC internals and

other hardware components. Figure 3.1 shows the complexity of an RDMA subsystem.
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This figure is based on public resources [83, 123, 96] and does not expose proprietary

information. Our conversation with Mellanox indicates that a real RNIC is much more

complex than our figure shows. To the best of our understanding, an RNIC has at least 6

components: (1) a TX engine that receives doorbells (a signal mechanism for the server to

notify RNIC to send a request), fetches and processes requests, and initiates transmission;

(2) an MMU that translates the virtual address to physical address for RDMA memory

regions; (3) an SRAM-based NIC cache that caches per-connection metadata and memory

translation table; (4) a RX engine that processes incoming data and generates comple-

tion to notify server; (5)(6) buffers that hold packets to transmit and received packets.

An RNIC is connected to a server via PCIe. The server has two CPU sockets and each

CPU socket has four CPU chiplets (Only AMD CPUs and new-generation Intel CPUs

have cross-chiplet communication, otherwise all the cores inside a CPU socket share the

last-level cache.) RNICs and GPUs are all connected to PCIe switches.

There are many potential performance bottlenecks inside the RNIC and between the

RNIC and other hardware components within the RDMA subsystem. We use red circles to

show such potential bottlenecks (in Figure 3.1). When these bottlenecks are triggered, the

network performance may drop and the RNIC can even send out pause frames to reduce

the amount of traffic going through the RNIC. We find that many anomalies only occur

when multiple bottlenecks or the bottlenecks between different components are triggered.

For example, when the RNIC receives a packet, it will store the packet in RX buffer,

process the packet (circle 7), and finally DMA the content to main memory or GPU

memory (circles 10, 12, 13 or circles 10, 12, 14). Normally, the RX buffer won’t accumulate

much because the PCIe bandwidth is larger than RNIC’s line rate (circle 1). However,

once there exists loopback traffic (e.g., the client and server are collocated on the same

host), the loopback traffic (circle 11) may drain the PCIe bandwidth and cause RX buffer

accumulation. It depends on both the RNIC and the PCIe slot. The worst consequence

is that the RNIC keeps sending a large amount of PFC pause frame and threatens the

entire data center network. Vendors’ individual tests are not able to uncover this anomaly
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because it depends on the combination of circles 1, 11, 12 (even more) from different

components. Further, data center operators like us may use highly customized hardware

or specific system configurations that are not accessible to vendors. This makes it necessary

and crucial for us to conduct our own independent tests before deploying RDMA hardware

in production, especially for anomalies that can potentially generate pause frame storms.

3.2.2 Existing Approaches

Data center operators’ tests are integration tests: instead of testing individual hardware

components, these tests focus on the performance of the entire RDMA subsystems. There

are two existing approaches. The first approach is to run a set of test traffic, such as

Perftest [108] and OSU micro-benchmarks [105]. The second approach is to run a repre-

sentative set of real applications. However, these two approaches can not uncover RDMA

subsystem performance anomalies comprehensively. For example, we deploy 200 Gbps

RNICs in our clusters to support a performance-critical distributed machine learning frame-

work. We test the machine learning framework on the cluster of these RNICs, and there is

no performance anomaly found. We also have done extensive testing both with synthetic

testing workloads and other real applications before deployment. However, months after

deployment, our developers find that the performance of the framework has reduced sig-

nificantly, even worse than just using 100 Gbps RNICs. At the same time, a substantial

amount of pause frames are generated from these 200 Gbps RNICs. This is strange because

pause frames usually appear with hundreds of connections that trigger congestion, but our

machine learning framework only creates a few connections between each server pair. We

stopped the machine learning framework and ran our performance tests again, and ev-

erything is normal. After several weeks of careful debugging, we finally realize that the

case only happens when the application (1) use one-sided RDMA operations with Reliable

Connection, (2) has bidirectional traffic, (3) uses a particular workload including a mixture

of small and large messages, (4) with 200 Gbps RNIC on particular AMD servers. We find

that the developers for our machine learning framework slightly modified their code after
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Figure 3.2: Collie system overview. The workload engine sets up RDMA traffic. The
anomaly monitor detects performance anomalies and their minimal feature sets. The work-
load generator fetches hardware counters and decides the workload pattern to test.

passing our application tests. The new workload contains messages of mixed lengths (i.e.,

a large message followed by a small message followed by a large message in bidirectional

traffic), which triggers a performance bottleneck between the RNIC and the PCIe switch.

This is not a problem with 100 Gbps RNICs from the same vendor or on other types of

servers.

The fundamental reason why current approaches fail to uncover such anomalies is that

they only test existing workloads and inherently are not able to capture anomalies triggered

by unknown workloads. However, real application workloads are various and will change

over time. Besides, even current approaches have found such anomalies, it is hard and

time-consuming to locate the triggering conditions. Capturing the triggering conditions of

performance anomalies allows data center operators to work with vendors to fix potential

hardware/firmware bugs, and improve the reliability and performance of the data center

network. When fixes to the anomalies are not immediately available (e.g., firmware up-

grade, hardware replacement), application developers can build high-performance RDMA

applications by avoiding workload that can trigger anomalies.
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3.3 Overview

We build Collie, the first tool to help data center operators systematically search for ap-

plication workloads that can trigger performance anomalies.

The first question we need to answer is how to define an anomaly? Unfortunately, to-

day there does not exist such a definition. Having such a definition is fundamentally hard

because application performance (e.g., latency) can be highly dependent on the workload

and the hardware. Instead of trying to capture the entire set of anomalous behaviors,

we focus on two types of performance anomalies that are of great importance in produc-

tion environment and can be precisely defined: when applications keep injecting RDMA

traffic into the network, (1) no PFC pause frames should be generated if the network is

not congested; (2) throughput should be bottlenecked either by total bits/second or total

packets/second as in RNIC specifications. The first definition ensures that an RDMA sub-

system will not threaten the entire data center network and the second ensures that an

RDMA subsystem’s capability matches user expectation. 1 We discussed this definition

with several hardware vendors, and they all agree with our definition. Even though some

anomalies may be due to system limitations rather than bugs, it is also important for both

vendors and us to be aware of them. We report all the anomalies we found using this

definition to the hardware vendors, and they acknowledged all the reported anomalies. We

believe that this definition naturally matches the application developer’s mental model of

RDMA and thus allows developers to roughly estimate the network performance.

Given this definition of anomaly, we still need to overcome three major research chal-

lenges.

Challenge #1: How to design a comprehensive workloads search space for a given

RDMA subsystem? An ideal solution is to carefully analyze and modeling the entire RDMA

subsystem, and then construct the search space from the perspective of hardware. This

1 We do not use latency as a metric to define anomalies. The only latency specification for RNICs is the
latency under zero load. We did not observe any anomaly in this way, probably because the RNIC is not
stressed. However, when RNIC is stressed, it is hard to accurately define the correctness of latency or tail
latency due to queuing delay.
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complete white-box approach allows us to test all bottlenecks and the combinations of them

givens an RDMA subsystem. However, it is impractical for data center operators like us due

to the black-box nature of RNICs and other hardware components. Our key observation is

that though the components of RDMA subsystems are black boxes and there are diverse

RDMA applications, the abstractions between the hardware and applications are clearly

defined and stable. All application workloads are essentially composed of a series of basic

verbs operations, a narrow waist of the RDMA programming. With this observation, we

carefully analyze this RDMA programming abstraction and design a general search space

(§3.4).

Challenge #2: How to search efficiently? Due to the complexity of RDMA subsystems

and the variety of workloads, the size of search space is very large. Unfortunately, none

of existing heuristic search algorithms can be directly applied due to the lack of a search

signal (e.g., direction for the next workload to test). We observe that there are two sets of

counters commodity RDMA subsystem provide can be leveraged to guide the search. The

first set is known as performance counters. For example, all modern RNIC provide the

counter of bits sent per second for monitoring purpose. The second is known as diagnostic

counters. Modern RNICs and other hardware components expose diagnostic counters for

debugging purpose (e.g., the counter indicates PCIe backpressure and NIC internal cache

miss) [99, 104]. Diagnostic counters are more informative. For example, when some

bottlenecks of the RDMA subsystem are triggered, the performance may not drop while

the corresponding diagnostic counter has increased. However, using diagnostic counters

typically requires vendor’s assistance, and the number of diagnostic counters customers

can access depends on vendors. For Collie to be general, we use both performance counters

and optionally diagnostic counters as search signals. We conduct the efficient search by

using a simulated annealing based algorithm to drive these counters to extreme value

regions (§3.5.1).

Challenge #3: How to find the set of conditions to trigger anomalies? Some anoma-

lies are complicated and only occur when many features co-exist, such as a certain type
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of transportation, particular message pattern, lots of connections, and specific batching

operations. We invent a minimal feature set (MFS) algorithm to detect each factor’s con-

tribution to the uncovered anomaly and construct the necessary conditions set. To search

efficiently, we use MFS to avoid testing similar workloads that map to the same anomalies.

After the search, developers use the MFS to understand the triggering conditions for each

anomaly and bypass them accordingly when the fixes are temporarily unavailable (§3.5.2).

Figure 3.2 shows our system design. Collie consists of three core components: (1) a

workload engine that conducts experiments on RDMA subsystems by setting up RDMA

traffic; (2) an anomaly monitor that detects performance anomaly and MFS to reproduce

the observed anomaly; and (3) a workload generator that decides the next workload pattern

to experiment based on the counters collected in the RDMA subsystem and the current

search space. All the experiments Collie does are on the RDMA subsystem with two servers

with RNICs, connected with a commodity switch.

3.4 Search Space and Workload Engine

There are two types of factors that can affect an RDMA subsystem performance in deploy-

ment. First, we need to consider the application workloads. These include host topology

(i.e., where does traffic come from inside a server), how many memory regions the appli-

cation registered, what transport applications choose to use, and the message patterns.

Second, we need to consider the network behavior, for example, congestion on switch and

packet loss rate. Currently, our paper focuses on constructing a comprehensive search

space for the first factor. For the network behavior, we consider a simplified environment:

two RNICs connected by a single switch, and there is no packet drop on the switch. Collie

can be easily generalized to test more complicated environments.

We take the bottom-up approach to construct a comprehensive search space for various

application workloads. We decompose application workloads into combinations of basic

RDMA operations and construct the search space based on these combinations. Figure 3.3
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Figure 3.3: RDMA programming abstractions.

shows the key abstractions and operations of RDMA programming. These are only high-

level software abstractions exposed by standard verbs API and we do not need to know how

these high-level abstractions are implemented in the RNIC. In this way, the search space

is more comprehensive and general because it does not rely on either extra proprietary

RDMA subsystem hardware knowledge or specific application features. In addition, the

combinations of verbs operations are inherently able to describe workloads of both single

application and co-existing scenarios.

We examine the RDMA programming model at first and extract four search dimensions

that jointly describe the application workloads of the entire subsystem. To send a mes-

sage through RDMA networks, applications first need to register a set of memory regions

(MRs), using ibv reg mr. Once registered, an RNIC has the right to directly access these

MRs without CPU involvement. Second, applications create a set of queue pairs (i.e., con-

nections in traditional networking terminology), using ibv create qp and ibv modify qp.

Applications need to choose a transport type for each queue-pair (QP). There are three

standard types of QPs: Reliable Connection (RC), Unreliable Connection (UC), and Un-

reliable Datagram (UD). Applications can use ibv post send or ibv post recv to post

a list of Work Queue Element (WQE). Each WQE represents a work request and has a

scatter-gather (SG) list. Each SG list contains a list of entries and each entry designates a
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contiguous memory region that is within the registered memory regions. A WQE can notify

the RNIC to READ/WRITE remote memory (1-sided operation) or SEND/RECV local

memory to/from a remote server (2-sided operation). To know that a WQE is complete,

the application can register a completion queue (CQ) using ibv create cq, and the appli-

cation can call ibv poll cq to poll on the CQ to get completion queue elements (CQE).

Given this RDMA programming model, we extract the following search dimensions.

Dimension 1. Host Topology. Host topology describes how traffic flows to/from an

RNIC to/from other server hardware components. Individual component tests are hard

to cover this dimension while the topology has a huge impact on RDMA subsystem per-

formance. For example, traffic can be from NUMA-affinitive DRAM or from a GPU that

needs to traverse both PCIe and SMP interconnect between NUMA nodes. The latter will

have a longer data path and therefore higher average DMA latency. This will trigger PCIe

backpressure to the RNIC and may induce performance anomalies under some specific

application workloads. We list all accessible memory devices for this dimension.

Dimension 2. Memory Allocation Settings. Traditional RDMA testing is not compre-

hensive for this dimension, while the memory allocation settings are crucial for RDMA

subsystem performance testing. First, the number of MRs affects RDMA subsystem per-

formance because RNIC has an MMU that translates virtual addresses of memory regions

to DMA-capable physical addresses and handles memory protection (e.g., authorization).

RNIC only caches a fixed size of entries of the memory address translation table. If too

many MRs are registered, it is then likely that the RNIC encounters cache miss and needs

to access memory address translation tables on server DRAM via extra PCIe operations.

These interactions have an impact on the performance. Second, MRs can have different

sizes. This also affects RDMA performance because the size also affects the number of

translation table entries. Moreover, many RNICs use Intel Data Direct IO (DDIO) to di-

rectly access the CPU’s last-level cache. If the access range of an MR is large, it can cause

severe cache misses in the CPU’s last-level cache [19]. This dimension is bounded because

we can set a reasonable upper bound on the number of MRs (200K), and the MR size is
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bounded by the total amount of memory that can be registered (pinned) in the physical

server.

Dimension 3. Transport Setting. Transportation setting is crucial for RNIC perfor-

mance, and this is well known in the research community [58, 89, 56]. We use the following

factors to compose the transport setting: (1) QP type (RC, UC, UD), (2) the number of

QPs, (3) the opcode type (SEND/RECV, WRITE, READ), and (4) the usage of SG and

WQE. Different QP type with different opcode creates different pressure for the RNIC.

For example, UD does not require ACK for each packet, which lessens the RNIC packet

processing pressure. However, the SEND/RECV requires pre-posted receive buffers, which

puts more pressure on the RNIC cache. The number of QPs also has a great impact on

RNIC performance because of the limited RNIC cache. This is known as the scalability

problem [56, 96, 19]. How SG list and WQE affect RNIC performance is a bit tricky.

RNICs have to consume extra PCIe bandwidth to fetch WQE from the host DRAM [58].

The PCIe bandwidth consumed by WQE becomes substantial under some particular ap-

plication workloads and can even be the performance bottleneck. We enumerate all the

transport types and the opcodes (e.g., RC WRITE, UD SEND). It is practical and reason-

able to set an upper bound (e.g., 20K) for the number of QPs because data center operators

will hardly set up more connections. The SG list and WQE can be parameterized by this

formula:
řn

i“1mi “ k, where k denotes the number of messages to send, n denotes the

number of WQE and mi denotes the number of SG elements within the ith WQE.

Dimension 4. Message Pattern. Existing RDMA testing approaches lack flexibility

and comprehensiveness, especially for this dimension. Perftest [108] only repeatedly

send messages of a fixed size and other collective communication benchmarks (e.g., OSU

benchmark [105]) test RDMA similarly. These simple benchmark traffic are inadequate

for RDMA subsystem testing because they ignore the interaction among different requests

(i.e., WQE) in a sequence.

Our ideal goal is to construct this dimension that can represent any application message

pattern. However, it is impractical because application traffic can be very different and the
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interaction among different requests is unknown given the black-box nature of RNIC. We

therefore construct this dimension in the following way. We build a request vector with n

elements, where each element describe the request attribute (e.g., size of the message to

send). We assume that the 1st request affects the 2nd, the 3rd, ..., the nth requests but won’t

affect the request after the nth. The larger n we set the larger search space we can cover,

but we also need to consume more time. This kind of trade-off is similar to the approach

when testing file systems [79], where researchers test fixed-length file system operation

sequences. Modern RNIC has limited Processing Units (PU) and pipeline stages [116],

restricting the number of outstanding requests an RNIC can process. We thus set n to be

the product of the number of PUs and the pipeline stages. We discretize request size into

multiple discrete value regions based on MTU and the burst size of the RNIC. The RNIC

splits a long request into multiple bursts and processes each burst at one time to avoid

Head-of-Line (HoL) blocking. The granularity can be easily modified. With more search

time, we can discretize request size in a more fine-grained way. Message inter-arrival time

is usually considered as a parameter for application workloads. However, adding the inter-

arrival time will substantially extend our search space, so we temporarily only consider the

pattern without such inter-arrival time.

Workload engine. We build a flexible workload engine to conduct tests in our search

space. Compared to traditional traffic generation tools, e.g., Perftest2, our workload

engine is more flexible and has a holistic view. It can send and receive traffic with particular

pre-defined patterns (e.g., a large WRITE request followed by a small SEND request).

Besides, it supports various memory and transport settings, which can test the entire

subsystem holistically. To test with a point in our search space, Collie first translates a

test point’s settings into a set of input parameters of the workload engine. For example,

the setting of dimension 1 and 2 are translated into memory allocation parameters (i.e.,

which GPU or NUMA DRAM to use and how many MR to register) of the engine. Then,

2 Existing tools, e.g., Perftest, are arguably not designed for this type of testing. They are performance
benchmark tools. However, we are not aware of any other tools can that test RDMA subsystems.
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the workload engine will take these input parameters to set up connections and generate

traffic.

3.5 Search for Performance Anomalies

The total size of our search space (i.e., the combination of parameters) is on the order of 36.

Each experiment we do requires 20-60 seconds, mostly depending on the number of QPs

to create and the number of MRs to register. This means we cannot exhaust the search

space. One naive approach is to generate random input in the search space. This approach

is already much better than existing tests because the design of our search space is more

comprehensive than that in existing tools (§3.7). However, similar to typical black-box

fuzz testing on software, random inputs can only find few anomalies and cannot efficiently

uncover complicated anomalies that require multiple conditions to hold simultaneously.

3.5.1 Workloads Generation

We leverage two types of counters to guide the search. The high-level approach is to use an

optimization algorithm to drive counters to extreme value regions by keeping mutating the

test workloads. For performance counters, we drive the counters to low-value regions. For

diagnostics counters (which map to unexpected events), we drive the counters to high-value

regions.

Our algorithm is based on simulated annealing (SA). SA is a probabilistic algorithm

to find the global minimum of a given function. The idea is to keep mutating the input in

the direction of minimizing a given function. SA calls the function value energy. To avoid

getting stuck at a local minimum, SA maintains a temperature value. At the beginning

of the algorithm, the temperature is high and SA allows mutating input in the direction

of increasing the energy. As temperature decreases during the search, SA is less likely to

move the input in the direction of increasing the energy. Finally, when the temperature is

below a certain threshold, every mutation of the input must decrease energy. SA finishes

when there is no way to mutate the input to make the energy lower.
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Algorithm 1 Search for Performance Anomalies

Require: S: initial anomaly set; T0: a high enough initial temperature; Tmin: the lowest limit of
temperature; n: the number of times SA runs for a certain temperature;

Ensure: S: An updated anomaly set;
1: Pold,Mold “ MeasureRandomPointpq; pick a random point, setup traffic and collect metrics

as M
2: while T ą Tmin do
3: for i “ 0; i ă n; i`` do
4: mutate Pold for a new application workload Pnew;
5: if MatchMFSpS, Pnew) then continue;
6: Mnew “MeasurePointpPnewq;
7: ∆E = CompareMetricpMnew,Moldq;
8: if ∆E ă 0 then
9: Pold “ Pnew

10: else
11: the probability prob “ expp´∆E{Tpiqq;
12: if randp0, 1q ă prob then Pold “ Pnew;
13: end if
14: if IsAnomalypMnewq then
15: new mfs “ ConstructMFSpPnewq;
16: Put new mfs into S;
17: Pold,Mold “ MeasureRandomPointpq; pick another random point when a new

anomaly is found
18: end if
19: end for
20: T “ T ˚ α; where α is decay factor
21: end while
22: return S

Algorithm 1 shows our algorithm that is based on SA. We maintain a list of perfor-

mance anomalies. Each anomaly is an MFS (e.g., an area in the search space) that contains

workloads to reproduce the performance anomaly. The search starts from a random work-

load in the search space, and our algorithm measures the counter values. In each iteration

of SA, we mutate the workload in one of our search dimensions (line 4). We test whether

the new workload causes a performance anomaly with our anomaly monitor. If so, we

run our MFS algorithm to determine the entire area in the search space that belongs to

this anomaly. We add the new anomaly to the set and change the current workload to a

random one. If the new workload does not trigger a performance anomaly, we measure the

point by comparing counter values and decide whether to move the current workload to

the new one. We always skip workloads that belong to an existing performance anomaly

for efficient search.
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Table 3.1: Testbed RDMA subsystems configurations. We use numbers in the name of
concrete CPU types for confidentiality.

RNIC Speed CPU PCIe NPS Memory GPU
A CX-5 DX 25 Gbps Intel(R) Xeon(R) 1 3.0 x 16 1 128 GB -
B CX-5 DX 100 Gbps Intel(R) Xeon(R) 2 3.0 x 16 1 768 GB -
C CX-5 DX 100 Gbps Intel(R) Xeon(R) 2 3.0 x 16 1 384 GB V100
D CX-6 DX 100 Gbps Intel(R) Xeon(R) 2 3.0 x 16 1 768 GB -
E CX-6 DX 200 Gbps AMD EPYC 1 4.0 x 16 1 2 TB A100
F CX-6 DX 200 Gbps Intel(R) Xeon(R) 3 4.0 x 16 1 2 TB A100
G CX-6 VPI 200 Gbps AMD EPYC 1 4.0 x 16 2 2 TB -
H P2100G 100 Gbps Intel(R) Xeon(R) 2 3.0 x 16 1 384 GB -

Our algorithm extends the standard SA algorithm in several important ways to adapt

it for our context. First, we compute the energy in the following way: assuming the counter

value changes from A to B, we set the different in energy (∆E) to be B´A
A for performance

counters and A´B
B for diagnostic counters because we are minimizing performance counters

and maximizing diagnostic counters to trigger potential anomalies. This also allows us to

avoid value region problem (e.g., the value regions of diagnostic counters are sometimes

opaque). Second, we do not require SA algorithm to find the actual global optimum

because we care about all potential anomalies. We therefore always set a more relaxed

temperature and α that enable the algorithm to jump out of a certain stage even when it

has already run lots of iterations. In addition, we maintain a set of performance anomalies

(i.e., MFS). When mutating the point, we compare the mutated point with our existing

MFS (line 5). Each MFS contains a list of parameters ranges. If the mutated point matches

all parameters ranges of an MFS (i.e., the parameter value of this point is in the MFS’s

range), we claim this point belongs to the MFS and skip testing it. This ensures that the

future search does not redundantly test workload already covered by the existing set of

anomalies.

3.5.2 Anomaly Monitor

Our anomaly monitor detects performance anomalies and computes the MFS of them.
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Anomaly Detection Condition. We use two conditions to detect anomalies. First, if

any pause frame is generated. Here we use a metric called pause duration ratio. If the

pause duration ratio is 1%, this means for every second, transmission is paused by 10 ms.

We set our threshold to be 0.1%. The reason is our experiment platform only has two

servers and our switch that connects the servers support line rate traffic, so there is no

network congestion to begin with. We set the threshold to be above 0, because RNIC

may generate a few pause frames when the memory bus or PCIe bus is busy temporarily,

especially when connections are just set up. Second, each RNIC has its maximum bits per

second and maximum packets per second in its specification that can be easily verified by

running simple benchmarks. Without performance anomalies, network traffic should be

restricted by either one of these upper bounds. If a workload’s throughput (in terms of

both metrics) is 20% lower than the upper bounds, it means that the performance is likely

to be restricted by some other bottlenecks of the RDMA subsystem. Collie reports this

and runs the MFS algorithm below.

Minimal Feature Set (MFS). After we detect an anomalous workload, we need to know

what features of this workload actually trigger the anomaly. For example, if we currently

find a new anomaly that has 5 features. It may be the case that 3 features are already

sufficient to reproduce this anomaly. One approach is to use machine learning based algo-

rithms to generate decision trees or deep neural networks to locate the area in the search

space for the anomaly. However, machine learning approaches usually require much more

training data and thus many more hardware experiments.

We instead use a heuristic approach. Since we only have 4 search dimensions with few

factors, we just do a few tests on each dimension to determine whether a factor belongs

to the MFS. For example, if our search algorithm finds a certain workload using UD can

cause a performance anomaly. We test whether the same workload with RC and UC can

cause performance anomalies. If not, UD belongs to the MFS because it is necessary to

reproduce the anomaly. To determine the MFS of a dimension that is continuous (e.g.,

number of connections), we discretize them manually into a set of value regions and test
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each of them. Finer-granularity discretization is acceptable because MFS algorithm only

runs when uncovering a new anomaly and the number of anomalies is relatively small

compared to the entire search space.

We report all the anomalies to RNIC vendors and we can wait for their fixes. Unfortu-

nately, the solutions to these anomalies are case by case. Some anomalies require vendors

to spend a substantial amount of time on coming up with solutions and the solutions may

not be applicable for data center operators immediately, such as hardware replacement.

Hence, developers need to avoid such anomalies instead of waiting for a fix. Collie provides

MFS to help developers avoid such anomalies by changing application workload to break

the conditions in the MFS.

MFS helps developers to avoid anomalies in two areas. The first one is anomaly preven-

tion. Before an application is implemented, Collie lets developers restrict the search space

using their knowledge of their applications to represent all the possible workloads. Then,

Collie outputs whether the restricted search space contains performance anomalies. If not,

assuming the developers’ understanding of their applications is correct, the application

won’t encounter any performance anomaly found by Collie. The second one is debugging.

When an existing application unfortunately encounters anomalies, we can run Collie on the

RDMA subsystem and generate all the MFS. Comparing the application with the gener-

ated MFS, Collie provides several suggestions that help to break the triggering conditions.

We present two real cases to show how MFS helps developers in §3.7.3.

One caveat of our approach is that we are not able to know the root causes of these

anomalies given the black-box nature of the RNICs and other hardware components in the

RDMA subsystem. This means it may be the case that multiple MFS are actually due to

the same anomaly (i.e., the same hardware bug). This is acceptable because the goal of

MFS is to accelerate the search algorithm by eliminating redundant test cases and help

developers understand what features of the workloads can trigger the anomaly. We anyway

need to report all the anomalies (i.e., all the MFS) we found to the vendors and that is

also the best we can do given the RNIC black-box hardware nature.
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Table 3.2: Performance anomalies found on subsystem F and H with the necessary con-
ditions to trigger them. Anomalies marked with green color are new anomalies found by
Collie. Rest are the anomalies we know before building Collie.

RNIC Direc. Transport MTU WQE SGE WQ depth Message Pattern # of QPs Symptom

#1 CX-6 - UD SEND - ě64 - ě 256 - - pause frame

#2 CX-6 - UD SEND - ď8 - ě1024 ď1KB ě«16 low throup.

#3 CX-6 - RC READ 1K - - - ě16KB - pause frame

#4 CX-6 Bi- RC READ - ě32 ě4 - - ě«160 pause frame

#5 CX-6 - RC SEND 1K ě64 - ě1024 ě2KB and ď8KB - pause frame

#6 CX-6 - RC SEND 1K ď16 ě2 ě1024 ď1KB ě«32 low throup.

#7 CX-6 - RC WRITE - No - - ď1KB and ě«12K MRs - low throup.

#8 CX-6 - RC WRITE - No - ď16 ď1KB ě«500 low throup.

#9 CX-6 Bi- - - - ě3 - mix of ď1KB & ě64KB - pause frame

#10 CX-6 Bi- RC WRITE - ě64 - - mix of ď1KB & ě64KB ě«320 pause frame

#11 CX-6 Bidirectional cross-socket traffic on particular AMD servers pause frame

#12 CX-6 Particular GPU-Direct RDMA traffic on particular servers pause frame

#13 CX-6 Co-existence of loop traffic and receiving traffic pause frame

#14 P2100 Bi- RC 4K - ě4 - - ě«1300 low throup.

#15 P2100 - UD SEND - - - ě64 - ě«32 pause frame

#16 P2100 - RC READ 1K ě8 - - - ě«500 pause frame

#17 P2100 - RC SEND - ď16 - ě128 ď1KB ě«64 pause frame

#18 P2100 Bi- RC 1K ě32 - - ď64KB ě«30 pause frame

3.6 Implementation

The workload generator and the anomaly monitor are written in ˜2100 lines of Python.

The workload engine is implemented with ˜2000 lines of C/C++. We directly use monitor

tools from vendors to collect hardware counters (both performance and diagnostic counters)

from the RDMA subsystem.

The workload engine is implemented with the verbs API and rdma-core-34.0 libraries[115].

In deployment, the Mellanox RNIC uses mlx5 driver (OFED 5.2-1.0.4.0) and the Broad-

com RNIC uses bnxt driver (1.10.1.216.2.89.0). The workload engine set up connections

by TCP out-of-band transmission. When all connections are set up, the engine starts to

generate workload.

The anomaly monitor collects primary metrics, such as throughput and pause frame

duration, four times per iteration. It first decides whether the traffic is stable and then

compares the primary metrics (e.g., bits per second, packets per second) with the pre-

defined thresholds.

The workload generator collects counters using monitors provided by vendors. These

monitors provide counters every second. Collie fetches these counters four times per itera-
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tion and uses the average results.

3.7 Evaluation and Experience

We evaluate Collie on 8 different RDMA subsystems. Table 3.1 shows the hardware and

related configurations. We use the same anomaly detect conditions as described in §3.5.2

3.7.1 Performance Anomalies Found

Before we build Collie, we already know 3 existing anomalies. Collie can find all the

existing ones and find 15 new anomalies. All of them are reported to our vendors and are

acknowledged by them. Table 3.2 shows the 18 anomalies. We only present those found

on subsystem F and H because anomalies found on other subsystems are subsets of those

found on F. §3.11 provides details about these anomalies, including the exact workload, as

well as the explanations and solutions from vendors. Here we choose two tricky anomalies

to show the importance of Collie’s systematic search.

Anomaly #4: Bidirectional RC READ with large WQE batch size, long SG list, and

a few connections causes PFC pause frames. Our vendors have successfully reproduced

this anomaly in their environment using Collie’s traffic generator and acknowledged it, but

currently there is no fix. This anomaly cannot be found by existing approaches such as

using Perftest to generate workloads, because Perftest does not support flexible WQE

and SG list batching strategies. Though Perftest is not designed for this purpose, it is the

prevalent tool to uncover performance anomalies. To the best of our knowledge, we don’t

see any other state-of-the-art work address this problem, which also shows that Collie is

the first work to fill this vacancy.

Anomaly #10: Bidirectional RC WRITE with large WQE batch size, particular mes-

sage pattern, and a few connections causes PFC pause frames. This anomaly is not captured

by existing approaches (e.g., running current applications) but we successfully reproduce

it by slightly modifying our production RDMA RPC library: when users call the library

to send a message, it will try to send as many messages as possible in a WQE batch. The
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batch size is highly dependent on the timeout value. If the application is throughput sensi-

tive rather than latency sensitive, the timeout value can be set high, which allows a larger

batch size. Currently the timeout value is set small because most applications supported by

this library are latency sensitive. However, by changing this value we successfully enlarge

the WQE batch size and the conditions of #10 are all met. This shows the importance of

the anomalies found by Collie, as well as how Collie can capture those anomalies missed

by existing solutions.

We try our best to reproduce the anomalies found by Collie using existing workload

generators (e.g., Perftest), only 4 of them (#3, #8, #13, #15) can be reproduced with

very careful parameters tuning. Rest anomalies are all outside the search space of existing

approaches.

3.7.2 Running Time for Anomaly Search

To evaluate the efficiency of performance anomaly search, we compare Collie with two

baselines: (1) random input generation in our search space and (2) Bayesian Optimization

(BO), a widely used method in search problem [95]. We implement the BO approach based

on [95]. We set the counter values as BO’s optimization target. Our vendors provide us

with 9 diagnostic counters. For Collie and BO, we first generate 10 random points. We

then compute the standard deviation over the mean of the counter values collected in the

first 10 run and use the result to rank these diagnostic counters in decreasing order. Both

Collie and BO optimize each diagnostic counter in this order. For a fair comparison, we

use MFS to enhance BO as well. In this section, we use subsystem F as an example. We

run each search for 10 hours.

Figure 3.4 shows the running time to find performance anomalies. Random input (i.e.,

fuzzing) can already find 7 anomalies that only require simple conditions to trigger. BO

does improve efficiency but to a very limited extent. BO can speed up the search process

but only find 8 anomalies with the given time. We analyze the optimization process of

BO and find that it is not able to optimize the corresponding counters. Our guess is that
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Figure 3.4: Mean time to find anomalies with random input generation, BO, and Collie.
Error bars denote standard deviations. There is no red bar starting from 8, and no purple
bar starting from 9, because random input generation and BO can only find 7 and 8
anomalies, respectively.

BO works well when counter values are smooth in the search space. However, the counter

values in our search space can have sudden changes, because some discrete dimensions have

a huge impact on the counter values (e.g., QP type). Collie uses a simulated annealing

based algorithm to optimize the counter values and successfully speed up the search process.

Given limited time, it can find all the performance anomalies of this RDMA subsystem. We

believe this improvement comes from the optimization process: driving counters to extreme

regions is more likely to trigger performance anomalies. It is possible that a more efficient

search algorithm (e.g., a fine-tuned BO, reinforcement learning) can perform better, and

it is worth future exploration. However, our goal here is to demonstrate that existing

simple optimization algorithms, such as simulated annealing, can search efficiently with

these hardware counters.

Collie uses diagnostic counters and MFS to further speed up the search. Now we break

down their contribution to our overall search speed. Figure 3.5 shows the result.

The value of diagnostic counters. Figure 3.5 shows that with performance counters,

Collie(Perf) has already found 11 of the 13 anomalies, including the 3 existing ones. This

proves that the performance counters are informative and can be used to improve search

efficiency. It shows the generality of Collie because performance counters are general and
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provided by all commodity RDMA subsystems. Figure 3.5 also shows that using diagnostic

counters can further improve the speed. Given limited time, Collie(Diag) can uncover

more anomalies and is faster. For example, Anomalies #7 and #8 are not captured by

Collie(Perf) because there is no performance change during the search, but Collie(Diag)

can observe the increase of RNIC internal cache miss and uncover them.

The value of minimal feature set (MFS) The main difference between SA and Col-

lie is whether MFS is applied. With MFS, the efficiency of all approaches (both using

diagnostic counters and using performance counters) is significantly improved. For exam-

ple, Collie(Diag) only uses about half of the time to uncover all the anomalies found by

SA(Diag). MFS improves efficiency by eliminating redundant tests from the search space.

Otherwise, approaches without MFS may be stuck in the area of an uncovered anomaly.

To understand why increasing diagnostic counter values can help to find anomalies and

how MFS works, here we use Receive WQE Cache Miss counter as an example. We do

not rely on the meaning of these diagnostic counters during the search. To the best of our

knowledge, the counter means the number of times that RNICs need to issue extra DMA

operations to fetch receive WQE from host DRAM.

Figure 3.6 shows the diagnostic counter values during the search. The random in-

put generation approach (the orange line) does not increase the diagnostic counter value

and thus cannot find many performance anomalies. Collie w/o MFS (the green line) can

drive the diagnostic counter value very high, but it cannot find many distinct performance

anomalies because further increasing the counter value in the neighboring regions of existing

performance anomalies wastes time. Collie (the blue line) is effective in finding performance

anomalies, because it can both increase the diagnostic counter value to find application

workloads that cause anomalies and also do not need to test application workloads that

belong to the same anomaly. Figure 3.6 shows that most anomalies are found when the

diagnostic counter value is high. This also supports the intuition that it is likely to trigger

performance anomalies when the diagnostic counter value is driven to extreme regions,

which indicates the RDMA subsystem is under pressure. Some anomalies in Figure 3.6 do
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Figure 3.5: Mean time to find anomalies. (Diag) means diagnostic counters, and (Perf)
means performance counters. Error bars denote standard deviations.
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Figure 3.6: Diagnostic counter values (Receive WQE Cache Miss) during the search.
Counter values are normalized based on the maximum value we observed in the search.
Red crossings denote the performance anomalies found by Collie. Red triangles denote
the performance anomalies found by random input generation. Red squares denote the
performance anomalies found by Collie without MFS. Collie (the blue line) is flat for a few
minutes after finding a new performance anomaly. This is to represent the time needed for
extracting the MFS.

not show a high value of this counter. This is mainly due to that they are anomalies that

can be easily triggered. They are usually triggered at the beginning of the search process

(left corner of Figure 3.6) and another corresponding diagnostic counter value is high. For

example, Anomaly #13 has simple triggering conditions and is usually found very soon. It

does not increase the Receive WQE Cache Miss counter but will increase another counter,

the counter of PCIe Internal Back Pressure.
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3.7.3 Using Collie for Application Design

We use Collie in the development and performance debugging of two key RDMA applica-

tions.

First, Collie provides design suggestions for our self-developed efficient RDMA RPC

library during its design and implementation. The library needs to be CPU-efficient, and

we thus only consider RC as the transport because it is the only transport that supports

all one-sided RDMA operations (i.e., READ, WRITE) and ensures reliable messages. In

addition, major services that use this RPC library will mainly be deployed on subsystem

B and C. Given the search space, Collie provides two suggestions to the developers. (1)

Anomaly #4 is in the restricted search space if the RDMA RPC library uses READ, large

WQE batch size, and a long SG list to improve throughput and shape the message format.

(2) The library needs to use SEND/RECV to deliver small control messages and generally

keeps a large receive queue in case of receive-not-ready error. This can potentially trigger

Anomaly #5. Unfortunately, both #4 and #5 temporarily have no fix, so Collie suggest

developers (1) use RDMA WRITE to transmit data in a batch and (2) configure receive

queue depth carefully in SEND/RECV for small control messages transmission. This

RDMA based RPC library achieves expected performance and is currently supporting

three major services in production.

Second, Collie helps a distributed machine learning (DML) application based on BytePS [54]

bypass anomalies during its further development in our production environment. Our DML

application encountered anomaly #9 when deploying on our new subsystem E. We worked

with multiple vendors (RNIC, server, CPU), but for several weeks we didn’t find the root

cause or the fix for this anomaly. During this time, we ran Collie and compared the anoma-

lous application with the MFS we got. We found that the application’s behaviors matched

one of the MFS: (1) use a long SG list to send tensors with several meta data and (2)

the message pattern of tensors and meta data is a typical pattern that contains mix of

short and long messages. Collie suggested the developers to avoid these conditions. The
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developers hence bypassed this anomaly before vendors’ fix is ready.

3.7.4 Implications of the Performance Anomalies Found

After careful analysis of the anomalies found by Collie, we have several interesting and

important observations.

Holistic performance testing/tuning over entire RDMA subsystems is important. With

our vendors’ help, we try our best effort to present the root causes of these anomalies in

§3.11. The root causes can be bottlenecks from RNIC internals, PCIe controllers, and host

topologies (cross socket communication). This is because the RDMA network performance

is highly related to the entire subsystem and the holistic test is thus important. Besides, we

need to configure systems carefully (MTU, PCIe, NUMA, IOMMU, etc.) to fully leverage

RDMA’s performance [94, 58]. Collie shows that it is sometimes difficult to choose what

configuration to use. For example, comparing the Anomaly #14 with other cases related

to the MTU setting (e.g., #6), we observe there is no optimal MTU setting for all types

of RDMA subsystems. This also indicates that data center operators have to test various

RDMA subsystem configurations and tune the system carefully before deploying them.

Opaque resource limitation of the RDMA subsystems. RDMA virtualization, especially

performance isolation is important for deploying RDMA to the public cloud environment.

Researchers have spent a lot of effort and proposed several solutions [127, 60, 142, 42,

110]. However, anomalies found by Collie suggest that there are new challenges. Existing

approaches mainly focus on the isolation of visible resources like verbs structures (e.g.,

QP, MR, CQ), pinned memory, and bandwidth. However, there exist resources that are

opaque for developers and data center operators. For example, the RNIC has limited caches

that store many data structures, including connection context (well known as QPC) and

receive WQE. Anomalies #1, #3, #4, #5 show that severe WQE cache miss can have a

huge impact on performance. Hence, it is possible that a connection with a specific message

pattern affects another connection by triggering cache misses, even when the bandwidth and

other resources are well isolated. We therefore believe it is necessary to take these invisible
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resources into consideration when enforcing RDMA performance isolation, especially in

public clouds.

Does Ethernet-based RDMA need end-to-end flow control? Currently there is no end-

to-end flow control mechanism (e.g., the sliding window for TCP) for production Ethernet-

based RDMA deployment (i.e., RoCEv2). Collie shows that this is a major barrier for

RDMA subsystems to achieve high-performance and reliability. For example, many anoma-

lies (e.g., #9 and #12) show that the host limitation can slow down RNIC’s outbound rate

(dispatching received data to host memory). This makes the receiver cannot consume

packets as fast as the sender sends. Without end-to-end flow control, the RoCEv2 now

can only rely on PFC, the hop-by-hop flow control mechanism. PFC helps to avoid such

overflow packet drop but can cause catastrophic consequences [39, 49]. Note that RDMA

congestion control [144, 90, 71] mainly targets in-network congestion, so it is orthogonal.

A similar observation has been shown in IRN [91], but they mainly focus on in-network

behaviors. Collie shows that, in addition to switches, the hosts can also generate PFC

pause frames, which requires attention when deploying RDMA in production.

3.8 Discussion and Future Work

Search space. Collie mainly focuses on how specific application workloads can stress the

RDMA subsystems and trigger performance anomalies. We therefore focus on a simple

setting of two RNICs and assume the network is free of anomaly. In addition, we tem-

porarily ignore control path behaviors and the inter-arrival time between requests of a

connection. The main reason is that adding these factors substantially enlarge the size of

our search space. How to efficiently expand Collie’s search space is an interesting direction

for exploration.

Search algorithm. Collie uses simulated annealing based algorithm with minimal feature

set (MFS) to search efficiently. Though powerful data centers can run Collie on multiple

machines for a longer time, the search algorithm is also important. According to the MFS
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found by Collie, the expected time for a random approach is tens of days to find some

anomalies that require complicated triggering conditions. There are many other search

algorithms alternatives that can be leveraged, such as reinforcement learning. Integrating

more search algorithms into Collie is another interesting direction to explore.

Generality of Collie. We believe that Collie can be used for any type of RDMA subsys-

tem or even subsystems with other types of NICs. For example, though the link/transport

protocols are different for Infiniband and RoCEv2, the NIC internal structures should be

similar (e.g., both can use Mellanox CX-6 VPI RNIC). Collie only relies on non-proprietary

counters that expose NIC internal status. Therefore, this methodology should be general-

izable to any NIC in any deployment environment if similar counters are available.

Analysis of Performance Anomalies. Collie is designed to uncover anomalies and help to

bypass them from the perspective of data center operators, so it assumes minimal hardware

knowledge of RDMA subsystems for generality and does not directly analyze the underlying

causes. However, since the anomalies found by Collie can be severe (e.g., triggering PFC

pause storms), we believe to fully understand them is also an important direction to explore.

For example, as mentioned in §3.7.4, many anomalies are due to bottlenecks on some opaque

resources. Both RNIC vendors and data center operators hence need to understand what

extra resources should be considered if they want to provide performance isolation for

RDMA in a public cloud.

3.9 Related Work

Hardware bottlenecks in host networking. With the fast growth in NIC performance, re-

searchers have noticed several potential hardware bottlenecks in host networking. Neuge-

bauer et al. [94] study the implication of PCIe performance in host networking. Farshin

et al. [26] examine when and when not Intel Data Direct I/O technology can speed up

host networking by allowing NIC to access CPU’s last-level cache directly. Kalia et al. [56]

observe the scalability bottlenecks of caching per-connection metadata in RNIC. Stanko
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et al. [96] study how the number of connections and memory regions affect performance.

These works have raised our attention to RNIC hardware behaviors. Our work is on a dif-

ferent angle: we systematically uncover the performance anomalies that can be triggered

by specific application workload due to hardware bottlenecks.

Fuzz testing. Our techniques are in the broader category of fuzz testing. There are three

types of fuzz testing: black-box [87, 86], white-box [35, 36, 30], and gray-box fuzzing [15,

119]. Black-box fuzzing is to generate random inputs to test a program, and usually

black-box fuzzing can only uncover shallow bugs. In our context, this is also true that

using randomly generated application workload can only uncover a small set of anomalies

(§3.7). White-box fuzzing is to use symbolic execution on source code to guide the fuzzer

to generate inputs that can have high coverage. We do not have the internal designs of the

various components within an RDMA subsystem, so we cannot use white-box approaches.

Gray-box fuzzing in the software context is to use the coverage in the control flow graph

to guide the fuzzer to incrementally generate inputs that can lead to larger coverage. Our

approach is similar to gray-box fuzzing that we both use simulated annealing and mutation-

based test case generation. However, the key difference is that we use hardware counters

in the RDMA subsystem to guide the search rather than the coverage on the control flow

graphs of the source code.

Application design on top of RDMA. Many RDMA application designs leverage specific

RDMA performance characteristics, and some already try to circumvent certain RNIC

performance anomalies. HERD [57] uses UD SEND and UC Write to implement an RPC

library for reduced RNIC packet processing overheads and better scalability. FaSST [59]

and eRPC [56] uses UD to further mitigate RNIC scalability bottlenecks in RPC libraries.

Kalia et al. [58] provide guidelines to optimize HERD’s transport by considering PCIe

bottlenecks. FaRM [23, 24] uses RC to access remote in-memory key-value stores, so that

it can use RDMA 1-sided READ/WRITE operation for reduced CPU overheads. Our goal

is complementary: we systematically uncover the set of performance anomalies of RDMA

subsystems that application developers need to be aware of. We show that for RDMA
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developers, in reality, there is no optimal choice for a particular design decision (e.g., all

transport types have certain performance anomalies). Developers therefore need to have a

holistic view of all the design decisions and the entire RDMA subsystem before designing

and implementing RDMA applications.

3.10 Summary

RDMA has been increasingly used in the industry for its low latency and reduced CPU over-

heads. Performance anomalies hurt application performance and can lead to catastrophic

consequences (e.g., deadlocking the data center network). We build Collie, a tool to help

RDMA users to find performance anomalies of the entire RDMA subsystems, without the

need for access to any hardware internals design. Collie constructs a comprehensive search

space for RDMA application workloads and finds performance anomalies by using simu-

lated annealing to optimize two types of vendor-provided counters. We evaluate Collie on 8

commodity RDMA subsystems and Collie found 15 new performance anomalies that are all

acknowledged by the vendor. 7 of them are already fixed under vendors’ guidance. We also

present our experience in using Collie to guide our development of an RDMA RPC library

and help our distributed machine learning applications bypass performance anomalies be-

fore vendor fix is ready. Collie is available at https://github.com/host-bench/collie.
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3.11 Appendix: Performance Anomalies

More details of these anomalies and the lesson we learn are included in this section. We

present a concrete example of each anomaly and try our best to simplify each anomaly so

that they can be reproduced easier. It is possible to find milder or stricter conditions that

trigger the anomaly. We, to the best of our knowledge, also categorize these performance

anomalies to their root causes based on our observation and conversations with our vendors.

3.11.1 Subsystem F with Mellanox 200 Gbps CX-6 VPI

Root cause #1: Receive WQE cache misses bottleneck RNIC receiving rate.

(New) Anomaly #1: UD with large WQE batch size and long WQ causes PFC pause

frames and drastic throughput drop.

Collie observes that the pause duration ratio can be up to « 20.0% with only a single

UD QP. The pause duration ratio means that RNIC is asking the corresponding switch

port to pause for « 200 milliseconds within one second on average. We share the NIC

vendor with our traffic engine tool and the running command. They have reproduced the

anomaly in their environments, but the root cause is still not clear yet. Therefore, we claim

this anomaly not fixed yet. To the best of our knowledge, it is likely due to the cache miss

triggered by the pre-fetch mechanism for the receive WQE. This bottlenecks the receiver

from receiving traffic.

Here is a simplified concrete trigger setting of Anomaly #1: There is 1 connection of

UD QP using SEND/RECV Opcode. Each QP has 1 sending MR of 64KB and 1 receiving

MR of 64KB. Each QP has a work queue of length 256 (i.e., max send/recv wr = 256).

The MTU is 2KB. The sender keeps sending 64 requests in a batch. Each request only has

one SG element and a fixed size of 2KB.

(New) Anomaly #2: UD with small WQE batch size, long WQ, small messages, and a

few connections causes throughput to drop without pause frames.

This anomaly is similar to #1 but more tricky and has a different end-to-end symptom.
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Unlike #1, Collies does not observe PFC pause frames when the setting is slightly different

from #1: if the sender does not post sending requests in batch or the batch size is small

(e.g., less than 8) and the messages are relatively small (e.g., 512B, 1KB), the throughput

will drop by more than 20% without any PFC pause frame triggered when the receiver

has an extremely long work queue. If we set a smaller work queue for the receiver, the

throughput returns to the line rate. This anomaly is also reproduced and acknowledged

by NIC vendor. We conjecture that it has a similar root cause to #1, but due to unknown

RNIC bottlenecks, it behaves differently that the throughput drops without pause frame.

Here is a simplified concrete trigger setting of Anomaly #2: There are 16 connections of

UD QP using SEND/RECV Opcode. Each QP has 1 sending MR of 64KB and 1 receiving

MR of 64KB. Each QP has a work queue of length 1024. The MTU is 1KB. The sender

keeps sending 4 requests in a batch. Each request only has one SG element of 1KB.

(New) Anomaly #3: RC READ with large messages causes PFC pause frames when

MTU is under 1500 (the default MTU for Ethernet).

We observe the throughput drops drastically once we use RDMA READ opcode with

1500 MTU (1024 for RDMA), the default value for our data centers. The pause duration

can be up to 10% and throughput drops to less than half. We report this to our NIC vendor

and they tell us the low MTU may trigger the RNIC internal packet processing bottleneck

for this 200 Gbps NIC. We carefully survey the potential effect of MTU modification in

our deployment and modify the MTU from 1500 to 4200, which supports 4096 as RDMA

MTU. This anomaly is successfully fixed in this way.

Here is a simplified concrete trigger setting of Anomaly #3: There are 8 connections

of RC QP using Read opcode. Each QP has 1 sending MR of 4MB and 1 receiving MR

of 4MB. Each QP has a work queue of length 128. The MTU is 1KB. The sender keeps

sending RDMA READ requests. Each request only has one SG element and a fixed size of

4MB.

(New) Anomaly #4: Bidirectional RC READ with large WQE batch size, long SG list,

and a few connections causes PFC pause frames, even when MTU is set to 4200 (4096 for
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RDMA).

This anomaly is tricky but severe. Even with 4200 MTU (Anomaly #3 is solved),

Collie observes about 30% PFC pause duration ratio that when bidirectional RDMA READ

happens and both sides post a large number of requests in a batch (e.g., 32), each request

consists of multiple scatter gather element (e.g., 4) and there are a few connections (e.g.,

« 160). As usual, this newly found anomaly is reported to the vendor and they have

reproduced and confirmed the anomaly. For now, the root cause of this anomaly is still

unknown. Therefore, we claim this anomaly not fixed yet.

Here is a simplified concrete trigger setting of Anomaly #4: There are 80 connections

of RC QP using Read opcode for each direction. Each QP has 1 sending MR of 64KB and

1 receiving MR of 64KB. Each QP has a work queue of length 128. The MTU is 4KB. The

sender keeps sending 128 requests in a batch. Each request has 4 SG elements and a fixed

size of 128B.

(New) Anomaly #5: RC SEND with small MTU, large WQE batch, long WQ, and

long messages causes PFC pause frames and drastic throughput drop.

(New) Anomaly #6: RC SEND with small MTU, small WQE batch, large SG list batch,

long WQ, small messages, and a few connections causes reduced throughput without any

pause frame.

They are similar to UD ones (Anomaly #1 and #2) but have a more complex and

stricter trigger. For example, Collie observes such anomaly only when MTU is small (e.g.,

1024 for RDMA), work depth exceeds 1K for each QP as well as post multiple receive

WQE in a batch. These anomalies are different because they have different QP types and

stricter trigger conditions. For example, those anomalous application workloads in #1

and #2 won’t trigger anomalies if we only switch the type of QP from UD to RC. Several

discussion with our vendors tells us that the Reliable Connection type contains some subtle

variance inside the RNIC that result in such difference. These two are currently not fixed

yet.

Here is a simplified concrete trigger setting of Anomaly #5: There is 1 connection of
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RC QP using SEND/RECV opcode. Each QP has 1 sending MR of 64KB and 1 receiving

MR of 64KB. Each QP has a work queue of length 1024. The MTU is 1KB. The sender

keeps sending 64 requests in a batch. Each request has 2 SG elements and a fixed size of

2KB.

Here is a simplified concrete trigger setting of Anomaly #6: There are 32 connections of

RC QP using SEND/RECV opcode. Each QP has 1 sending MR of 64KB and 1 receiving

MR of 64KB. Each QP has a work queue of length 1024. The MTU is 1KB. The sender

keeps sending 8 requests in a batch. Each request has 2 SG elements and a fixed size of

1KB.

Root cause #2: Interconnect Context Memory cache misses reduce RNIC sending rates.

(New) Anomaly #7: RC WRITE with many QPs, small messages, small WQ depth,

and small WQE batch size causes reduced throughput.

(New) Anomaly #8: RC WRITE with many MRs, small messages, and small WQE

batch size causes reduced throughput.

Though these two anomalies are well-known as the RDMA scalability problem, our

real applications do not meet them even when the number of QPs exceeds 10K and the

number of MRs exceeds 100K. However, Collie uncovers these two so we classified them

into New anomalies. We take a deep look into how Collie discovers them and have many

discussions with our vendors. We find our experience interesting and worthy of sharing:

RNIC caches many necessary structures on its cache (e.g., memory translation table and

connection context). When a request triggers cache miss, the RNIC has to issue extra

PCIe operation to fetch them from the host DRAM. This will certainly induce extra PCIe

latency for processing this request (victim request). However, RNIC is highly pipelined, so

even when the victim request has finished the PCIe operation, it may still have to wait for

the other pipeline stages to get ready (e.g., a previous long egress request blocks this short

egress request). Therefore, if the request size is relatively large enough, the cache miss will

not have a large effect on end-to-end performance because the overhead is hidden due to

the pipeline.
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Here is a simplified concrete trigger setting of Anomaly #7: There are 480 connections

of RC QP using RDMA WRITE opcode. Each QP has 1 sending MR of 64KB and 1

receiving MR of 64KB. Each QP has a work queue of length 16. The MTU is 1KB. The

sender keeps sending requests without WQE batch. Each request has 1 SG element and a

fixed size of 512B.

Here is a simplified concrete trigger setting of Anomaly #8: There are 24 connections

of RC QP using RDMA WRITE opcode. Each QP has 1024 sending MR of 64KB and

1024 receiving MR of 64KB. Each QP has a work queue of length 128. The MTU is 1KB.

The sender keeps sending requests without WQE batching. Each request has 1 SG element

and a fixed size of 512B.

Root cause #3: PCIe controller blocks RNIC from reading host memory.

(Old) Anomaly #9: Bidirectional traffic with a mixture of small and large messages in

an SG list on particular AMD servers causes PFC pause frames and drastic throughput

drop.

This anomaly is found by one of our production applications that keeps sending such

message patterns (described in 3.2). The root cause of this anomaly is due to PCIe ordering

issue. If the RNIC on the AMD server is not configured as PCIe relaxed ordering device,

a DMA request may be blocked by the previous one. Therefore, when bidirectional traffic

with a mix of short and long requests. The ingress short requests, together with the

completion of egress traffic, blocks the ingress long requests. This results in RNIC buffer

accumulation and triggers a large amount of PFC pause frames. The throughput can

only achieve 60 Gbps with 25% pause frame duration ratio on average. With much effort

from our appreciative vendors, we finally fix this by configuring RNIC as a forced relaxed

ordering PCIe device.

Here is a simplified concrete trigger setting of Anomaly #9: There are 8 connections

of RC QP using RDMA WRITE opcode for each direction. Each QP has 1 sending MR

of 4MB and 1 receiving MR of 4MB. Each QP has a work queue of length 128. The MTU

is 4KB. The sender keeps sending 8 requests in a batch. Each request has 3 SG elements
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and the pattern is [128B, 64KB, 1KB].

Root cause #4: RNIC packet processing bottleneck.

(New) Anomaly #10: Bidirectional RC Write with large WQE batch size, a mixture of

long messages and lots of short messages, and a few connections causes PFC pause frames.

Collie finds that when several RC QPs keep posting multiple short requests (e.g., 64B,

128B) in batch and a few long requests for both directions, a large amount of pause duration

is triggered. This RNIC of the RDMA subsystem has already been configured as forced

relaxed ordering PCIe device (Anomaly #8 is solved). Our vendors have confirmed this

anomaly and announce it fixed in their upcoming firmware release. The lengthy discussion

with our vendor shows us the rough root cause: some component for packet processing

inside the RNIC is not fully bidirectional, and our bidirectional reliable traffic (requires

packet-level ACK) pattern with a huge amount of short requests, trigger that component’s

bottleneck. This results in long requests blocked and then many PFC pause frames are

generated.

Here is a simplified concrete trigger setting of Anomaly #10: There are 320 connections

of RC QP using RDMA WRITE opcode for each direction. Each QP has 1 sending MR of

64KB and 1 receiving MR of 64KB. Each QP has a work queue of length 128. The MTU

is 1KB. The sender keeps sending 64 requests in a batch. Each request has 1 SG element

and the pattern is [64KB, 128B, 128B, 128B].

Root cause #5: Host topology causes PCIe latency to increase, and this bottlenecks

RNIC receiving rate.

(New) Anomaly #11: On specific types of AMD servers, Bidirectional cross-socket

traffic causes pause frame storm and drastic throughput drop.

Collie outputs the minimal feature set with only source/destination NUMA set and

bidirectional traffic, indicating these two are the dominant factors. With this bidirectional

(A to B and B to A) cross-socket NUMA setting (e.g., NUMA 0 from socket 0 for A and

NUMA 2 from socket 1 for B, where socket 0 is the affinitive node for RNIC), even mild

traffic with only a single connection can trigger up to 15.7% pause frame duration ratio.
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After several conversations with our RNIC and server vendors, we conjecture the root cause

lies in these particular servers’ cross-socket performance because we run the same traffic

with the same NIC on different servers but do not observe the same phenomenon. We

consider this anomaly as fixed because the vendor helps us roughly understand the root

cause and suggest we use 2x100 Gbps NIC (each for a socket) to reduce cross-socket traffic,

and we follow this guidance.

Here is a simplified concrete trigger setting of Anomaly #11: There is 1 connection of

RC QP using RDMA WRITE opcode for each direction. Each QP has 32 sending MR of

4MB and 32 receiving MR of 4MB. Each QP has a work queue of length 128. The MTU

is 4KB. The sender keeps sending 16 requests in a batch. Each request has 1 SG element

with a fixed size of 256KB. The QP on host A is using the memory of socket 0 and the QP

on host B is using the memory of socket 1.

(Old) Anomaly #12: GPU-direct RDMA causes pause frame storm and drastic through-

put drop on particular AMD servers.

We observe a huge amount of pause frames and drastic throughput drop only on some

servers in our clusters. The pause duration ratio can be up to 15% and throughput

can drop to less than 20% (i.e., 40 Gbps) in this scenario. After careful debugging with

our NIC vendor’s strong support, we find out that there is a slight difference in PCIe

bridge configuration (PCIe ACSCtl) between the anomalous server and normal ones. The

anomalous configuration will forward GPU traffic to the root complex rather than directly

to the RNIC. We fix this anomaly by adopting the correct configuration.

Here is a simplified concrete trigger setting of Anomaly #12: There are 8 connections

of RC QP using RDMA WRITE opcode for each direction. Each QP has 1 sending MR

of 4MB and 1 receiving MR of 4MB. Each QP has a work queue of length 128. The MTU

is 4KB. The sender keeps sending 8 requests in a batch. Each request has 3 SG elements

and the pattern is [128B, 64KB, 1KB]. All MRs are allocated from GPU memory and we

use the GPU under the same PCIe bridge (i.e., shown as PIX/PXB in nvidia-smi result).

Root cause #6: RDMA NIC has potential in-NIC incast/congestion.
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(Old) Anomaly #13: Co-existence of receiving traffic and loopback traffic causes PFC

pause frames.

This anomaly is found in our real applications and can also be uncovered by Collie. Our

machine learning system runs workers and servers, and they use RDMA to accelerate the

communication. However, once a worker and a server are scheduled on the same physical

machine, there will be loopback traffic: the worker will send RDMA traffic to the server on

the same host. Meanwhile, the server is receiving traffic from workers on other physical ma-

chines. The combination of receiving and loopback traffic triggers congestion/incast inside

the NIC. And this RNIC lacks a mechanism to limit the loopback traffic rate, which makes

the problem worse. After several discussions with our vendor, we bypass this anomaly

by identifying the loopback communication and using other IPC mechanisms (e.g., shared

memory). We do not consider this anomaly fixed because we cannot fully rely on other

IPC mechanisms, especially for the virtualization environment. This anomaly exposes that

a proper design of RNIC needs to consider NIC incast and we are glad to see that some

latest RNIC have done so.

Here is a simplified concrete trigger setting of Anomaly #13: There are 16 connections

of RC QP using RDMA WRITE opcode. 16 receivers are 8 senders are on the same host

A and the other 8 senders are on the host B. Each QP has 32 sending MR of 4MB and 32

receiving MR of 4MB. Each QP has a work queue of length 128. The MTU is 4KB. The

sender keeps sending 16 requests in a batch. Each request has 1 SG element with a fixed

size of 256KB.

3.11.2 Subsystem H with Broadcom 100 Gbps P2100G

(New) Anomaly #14: Bidirectional RC traffic with lots of connections and the large MTU

causes reduced throughput without PFC pause frame.

Collie observes that a large MTU is necessary to trigger this anomaly. Once we switch

the MTU from 4096 (for RDMA) to 1024, both directions can achieve the line rate. This

is unusual because most cases show that large MTU improves the performance and small
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MTU triggers performance anomalies. We don’t observe the same phenomenon on any

other type of RNICs.

Here is a simplified concrete trigger setting of Anomaly #14: There are 1024 connections

of RC QP using RDMA WRITE opcode for each direction. Each QP has 81 sending MR

of 256KB and 83 receiving MR of 256KB. Each QP has a work queue of length 128. The

MTU is 4KB. The sender keeps sending 1 request in a batch. Each request has 4 SG

element with a fixed size of 64KB.

(New) Anomaly #15: UD with long WQ and lots of connections causes PFC pause

frames.

This anomaly is similar to the Mellanox anomaly #1 but has a slightly different trigger.

Collie successfully trigger #1 with only a single connection, but for P2100 RNIC our

multiple runs show that a few connections are necessary.

Here is a simplified concrete trigger setting of Anomaly #15: There are 32 connections

of UD QP using SEND/RECV opcode. Each QP has 1 sending MR of 4KB and 1 receiving

MR of 4KB. Each QP has a work queue of length 64. The MTU is 2KB. The sender keeps

sending 1 request in a batch. Each request has 1 SG element. The message pattern is like

[256B, 1KB, 64B, 1KB].

(New) Anomaly #16: RC READ with lots of connections, large WQE batch size, and

small MTU causes PFC pause frames.

This anomaly is similar to the Mellanox anomaly #4 and it shows that for the same

RNIC and other hardware components, the best MTU choice can be different when work-

loads change.

Here is a simplified concrete trigger setting of Anomaly #16: There are 500 connections

of RC QP using RDMA READ opcode. Each QP has 1 sending MR of 256KB and 1

receiving MR of 256KB. Each QP has a work queue of length 128. The MTU is 1KB. The

sender keeps sending 8 requests in a batch. Each request has 1 SG element with a fixed

size of 64KB.

(New) Anomaly #17: RC SEND with lots of connections, small WQE batch size, small
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MTU, short messages, and long WQ causes PFC pause frames.

We have reported this anomaly to our vendor. To the best of our knowledge, we

conjecture this anomaly is related to some corresponding WQE cache component inside

RNIC.

Here is a simplified concrete trigger setting of Anomaly #17: There are 80 connections

of RC QP using SEND/RECV opcode. Each QP has 1 sending MR of 1MB and 1 receiving

MR of 1MB. Each QP has a work queue of length 128. The MTU is 1KB. The sender

keeps sending 1 request per batch. Each request has 1 SG element of fixed size 1KB.

(New) Anomaly #18: Bidirectional RC WRITE with a few connections, large WQE

batch, and small messages causes PFC pause frames.

Our vendor has confirmed anomalies #17 and #18. They have reproduced these two

anomalies and help us fix them. The solution is to configure some specific registers of the

RNIC, and these two anomalies disappear.

Here is a simplified concrete trigger setting of Anomaly #18: There are 16 connections

of RC QP using RDMA WRITE for each direction. Each QP has 1 sending MR of 12KB

and 1 receiving MR of 12KB. Each QP has a work queue of length 64. The MTU is 1KB.

The sender keeps sending 16 requests in a batch. Each request has 1 SG element of fixed

size 64KB.
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4. Understanding RDMA Microarchitecture
In this chapter, we introduce Husky, the second core component of this dissertation. Build-

ing on our initial exploration of RDMA microarchitecture, we present our efforts towards

comprehensively understanding RDMA microarchitecture. We develop a systematic test

suite to reveal RDMA resource consumption model and use this model to construct a set of

workloads to identify RDMA performance interference. Husky reinforces the thesis that a

deep, microarchitecture-aware approach is critical for identifying performance interference

and anomalies in RDMA networks. Husky has identified numerous new types of interference

that are previously unknown, even for the RNIC manufacturers, highlighting its effective-

ness. Husky also show that none of existing solutions provide robust isolation against such

interference because they all neglect RDMA’s microarchitecture resource contention. This

work was completed in collaboration with Jingrong Chen, Wei Bai, Yechen Xu, Mahmoud

Elhaddad, Shachar Raindel, Jitendra Padhye, Alvin R. Lebeck, and Danyang Zhuo.

4.1 Introduction

Multiplexing workloads from different tenants on a shared computing infrastructure enables

the modern cloud computing era. The global cloud infrastructure revenue has already

surpassed 400 billion US dollars and is forecast to grow to reach around 1 trillion US

dollars in the next decade [21].

It is well known that having different tenants’ workloads share computing resources

can lead to unpredictable application performance interference [128, 40, 27] and privacy

leakage [72, 61]. This drives plenty of studies focusing on performance isolation in the

cloud, especially for performance-critical applications that have stringent service-level ob-

jectives [128, 122, 140, 40, 27, 78, 25]. The state of the art in practice has also significantly

advanced: CPU vendors even implement hardware mechanisms to control and isolate ac-

cess to CPU caches [43]. Side channels through shared resources are being patched over

time [72].
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Figure 4.1: Violations of performance isolation under existing methods.

In this paper, we visit one particular hardware device, the RDMA NIC (RNIC). RDMA

offloads the network stack from OS kernel to NIC hardware to provide high throughput and

ultra-low processing latency with near-zero CPU overhead. RDMA has been deployed in

datacenters at scale to improve performance and free up CPU cores for first-party workloads

like storage and ML [39, 71, 32, 93]. Now cloud providers are working towards supporting

RDMA in general-purpose guest VMs to benefit third-party workloads. To this end, cloud

providers must provide strong performance isolation for tenants sharing the same RNIC.

Many efforts have been made to improve network performance isolation in the public

cloud, with a special focus on bandwidth and packet processing capacity [13, 37, 38, 53,

65, 121, 123]. However, RDMA brings new challenges due to its unique and complex NIC

microarchitecture resources (e.g., NIC caches and processing units). Their existence and

impact on performance are already known to the research community [64, 58]. To avoid

performance anomalies, developers carefully design RDMA systems to avoid exhausting

these microarchitecture resources [56, 59, 23, 24, 116, 19, 92]. Our study is from a different

angle: we look at how these microarchitecture resources affect RDMA performance isolation

from a public cloud provider’s perspective. The cloud provider has no knowledge and

control of tenants’ RDMA applications, and tenants can consume RNIC microarchitecture

resources in arbitrary manners.

To demonstrate RNIC microarchitecture resources’ significant impact on performance
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isolation, we test the state-of-the-art approach: using SR-IOV with separated hardware

traffic class (HW TC). Both SR-IOV and HW TC are hardware mechanisms available on

commodity RNICs. HW TC leverages multiple hardware queues (usually 8 queues) in

RNICs. We can assign each tenant application to use one queue. We run one victim traffic

between two virtual machines using ib write bw, a standard RDMA bandwidth testing

tool in Perftest [108]. Each virtual machine is on a different server, and the two servers are

equipped with 100 Gbps NVIDIA ConnectX-5 RNICs. Figure 4.1 shows the bandwidth.

The bandwidth test achieves 80 Gbps. We start one virtual machine on each server to

represent an attacker (i.e., a buggy or malicious tenant application) and enable performance

isolation to grant half of the total bandwidth to the victim and the attacker. The victim

traffic reduces to 50 Gbps, which is expected. However, when we start a carefully designed

attacker traffic of only 1 Gbps to intentionally exhaust one of the RNIC microarchitecture

resources, the victim immediately drops to 2 Gbps, violating the performance isolation

guarantee (i.e., 50 Gbps of guaranteed network bandwidth for the victim).

We develop a set of experiments to study how RNIC microarchitecture resources are

used by different types of RDMA operations. Our experiments surface several interesting

findings, including: (1) Exception or error handling pauses the RNIC’s pipelines and causes

other tenants’ performance to drop drastically. (2) Control verbs cause a severe increase in

cache misses and impair other tenants’ performance. (3) Data verbs can exhaust different

types of microarchitecture resources and violate performance isolation. To the best of our

knowledge, we are the first to systematically study the impact of all types of control verbs

and exceptions on RDMA microarchitecture resource consumption.

We leverage these findings to create an RDMA operation model to describe the relation-

ship between the RDMA verb operations and the microarchitecture resources consumed.

Our model allows us to understand how to exhaust each of the RNIC resources. Us-

ing the operation model, we create the first test suite, Husky, to systematically test and

evaluate RNIC performance isolation solutions. Unfortunately, running our test suite on

commodity RNICs reveals bad news: there is currently no solution that can provide RNIC
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performance isolation. We have already reported all of our findings to three major RNIC

vendors, NVIDIA, Chelsio, and Intel. Our results are fully reproduced and acknowledged

by NVIDIA, one of the largest RDMA NIC manufacturers. Finally, we present new insights

on how future performance isolation solutions should be built. We hope these insights can

benefit future RNIC design and RDMA software development.

This paper makes the following contributions:

• We identify multiple interactions between RDMA operations and the RNIC microar-

chitecture resources, including the previously unknown impact of error handling and

control operations.

• We introduce the first RDMA operation model to describe how RNIC microarchitec-

ture resources are consumed in verb operations (the standard RDMA programming

API) and why these microarchitecture resources affect performance isolation.

• We build the first test suite to systematically test and evaluate RNIC performance

isolation solutions. We show that none of the existing performance isolation solu-

tions can pass our test suite. Husky test suite is available at https://github.com/

host-bench/husky.

This work demonstrates that providing performance isolation for RDMA in the pub-

lic cloud is much more difficult than one may think. There must be a higher standard

for future RDMA performance isolation solutions: they should carefully consider RNIC

microarchitecture resources and be evaluated by systematic benchmarks.

4.2 Background and Motivation

We first present the background knowledge of the network performance isolation in the

public cloud. Then we introduce RDMA and discuss new challenges presented by the

RDMA network performance isolation.
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4.2.1 Network Performance Isolation in the Public Cloud

Tenants in the cloud mainly cause contention on two types of network resources. The

first the most obvious one is the bandwidth in the network fabric. To mitigate bandwidth

contention among tenants, one line of work [121, 111, 114] statically limits per-tenant band-

width. Another line of work [13, 111, 14, 38, 134, 9, 69, 53, 112, 20, 52] gives each tenant a

minimum bandwidth guarantee and allows tenants to use spare bandwidth capacity. The

second type of resource is the packet processing resources at the end host. Per-packet

processing costs depend on many factors, such as cache misses and operations to perform.

Recently, PicNIC [65] provides isolation for such software packet processing. People also

leverage specialized hardware to achieve the same goal [123].

It is worthwhile to note that network performance isolation is very different from net-

work virtualization. Network virtualization orchestrates network resources to provide each

tenant with an illusion of an independent network. A tenant should not impact the con-

nectivity of the network of another tenant. The goal of network virtualization is to achieve

low overhead [60, 110, 42]. In comparison, network performance isolation focuses on how to

manage resource contentions to ensure that tenants can achieve guaranteed performance.

4.2.2 RDMA Overview

RDMA allows the NIC to directly transfer data between the wire and the application

memory. The networking protocol is implemented in the NIC. Figure 4.2 presents the

overview of the RDMA workflow. It classifies standard RDMA programming interface,

a.k.a., verbs, into two categories: control and data. An application first needs to call

several control verbs to allocate necessary objects, such as queue pair (QP) and completion

queue (CQ), to set up a reliable connection (RC), an unreliable connection (UC), or an

unreliable datagram (UD) transmission endpoint. Then the application needs to register a

memory region (MR). This registration essentially pins the memory in the host DRAM and

obtains the mapping from virtual addresses to physical addresses, which enables the RNIC
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Figure 4.2: Overview of RDMA workflow. Verbs processing logics are heavily offloaded
to the RNIC.

to directly read from or write to this memory region. All these control verbs are processed

by the following procedure: RDMA’s userspace libraries and kernel drivers process the

verb request, generate a request command, put the command in a negotiated command

queue, and ring the RNIC’s doorbell (e.g., memory-mapped registers). The RNIC fetches

the command from the command queue, processes it, and pushes the response back to the

queue. The drivers then process the response and return the object to the application.

After the above initialization, the application can start data transmissions between

local and remote memory. There are several types of operations that applications can use,

such as SEND/RECV, WRITE, READ, and ATOMIC. We name these operations as data

verbs. To issue a data verb, the application generally posts a request to its send queue and

rings the RNIC’s doorbell through userspace libraries. The RNIC then parses the request,

reads data from the host memory, segments data into packets, and transmits packets. This

procedure bypasses the kernel. There are certain differences in processing different types of

requests. For example, for SEND/RECV messages, the receiver should post enough RECV

requests before the sender issues SEND requests. Otherwise, the incoming SEND requests

may be dropped or need retransmissions because the receiver RNIC lacks receive requests

to process them, which is known as the receive not ready (RNR) error. For WRITE/READ
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Figure 4.3: RDMA NIC microarchitecture hardware details: when the doorbell is rung,
the RNIC first fetches the control/data verbs request from the host DRAM. (1) To fetch
and process this request, the RNIC may need several metadata (e.g., QP contexts) and
there are different types of caches inside the RNIC that can store this metadata. The
RNIC can get the metadata directly from these caches, (2) or fetch them from DRAM if a
cache miss happens (red lines in the figure). Then the RNIC processes the request and (3)
sends the response back to the host DRAM for control verbs or issues DMA requests to
read payload for data verbs. After (4) reading data from the host DRAM, the RNIC (5)
processes the data into network packets and (6) sends them to the fabric. The symmetric
receiver side is not shown for simplicity.

data to/from the remote end or execute ATOMIC operations, the sender should specify

correct remote virtual addresses and memory keys. An invalid address or a wrong key will

trigger a memory protection error and cause the QP to transition into the error state.

4.2.3 Why RDMA Performance Isolation is Hard?

As shown above, RDMA offloads many host network functionalities to the RNIC, which

has many invisible hardware components, and each component may individually become

a performance bottleneck. Figure 4.3 shows the hardware components of a commodity

RNIC. We draw this figure based on publicly available documents from NVIDIA [83,

99, 104]. In addition to the packet buffers (TX/RX Buffer), the RNIC also has multiple

processing units (PU) and many types of internal caches. Each internal cache is used

to store a specific type of metadata. For example, in NVIDIA RNICs, the Interconnect
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Context Memory (ICM) cache stores QP contexts; the Memory Translation Table (MTT)

and Memory Protection Table (MPT) store entries for memory address translation and

protection information; and the Work Queue Entry (WQE) cache stores prefetched send

WQEs and posted receive WQEs. As these caches are derived from the design needs,

other RNICs include similar components. We name these RNIC hardware components

microarchitecture resources based on the analogy for CPU hardware. CPUs are designed

to conform to a standard instruction set architecture (e.g., ARM, x86), but the CPU

designers can make the microarchitecture-level decisions, such as how many levels of caches

and the cache sizes. RNICs are similar because RNIC vendors have to provide the same

programming interface for RDMA application developers, but the vendors can decide on

these microarchitecture-level details, e.g., RNIC caches.

Many previous efforts have already identified some impacts of these microarchitecture

resources on RDMA application performance. For example, [58, 19, 92] find that an RNIC

caches QP contexts. A QP context cache miss can trigger an additional PCIe round

trip for the RNIC to fetch the context from the host DRAM, thus degrading application

performance. For example, 200 connections can cause an 90% request rate drop on NVIDIA

ConnectX-3 NIC [19]. However, these efforts study microarchitecture resources from the

perspective of an application developer. After a performance degradation, they identify

the bottleneck resource, seek more efficient methods to use data verbs, and modify their

applications correspondingly.

However, in public clouds, cloud providers have no control over tenants’ applications.

Tenants thus can consume RNIC’s microarchitecture resources as they wish, even mali-

ciously. Therefore, from the perspective of the cloud provider, we need to understand

the microarchitecture resource consumption of most of (if not all) RDMA verbs, not just

common data verbs. Only with this knowledge can we properly allocate RNIC’s microar-

chitecture resources to different tenants to deliver predictable performance.
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4.3 RNIC Microarchitecture Resources

In this section, we present a study on all the RNIC microarchitecture resources that we are

currently aware of. Prior works have already identified several particular forms of resource

contention. But our goal here is to systematically study all possible types of resource

contention. For each microarchitecture resource, we study how it is consumed by three

categories of RDMA operations: (1) control verbs that allocate objects for applications

(e.g., ibv create qp), (2) data verbs that initiate data transfer (e.g., ibv post send), and

(3) exception handling operations that handle exceptions or errors (e.g., RNR errors). Due

to space limitations, we first present a few key findings that have significant implications on

RNIC performance isolation. After that, we summarize several other findings. We present

a detailed analysis of NVIDIA’s responses to these findings in §4.11.

4.3.1 Methodology

Our findings center around how to exhaust RNIC microarchitecture resources through

the verbs interface [44], the standard RDMA programming API. For each key finding,

we demonstrate it with a concrete setting, which consists of a victim workload and an

attacker workload. Although we use the terminology attacker, the attacker tenant does

not get unauthorized access to other tenants through vulnerabilities. Instead, the attacker

is just a normal RDMA application that issues standard RDMA verbs. Each tenant has

one client and one server. The clients of the victim and the attacker locate on the same

physical machine and share the same RNIC. The servers of the victim and the attacker are

colocated on a different physical server. During the measurement, we do not enable any

isolation mechanism. We will study existing performance isolation solutions in §4.5.

We focus on the performance interference between the victim and the attacker through

the exhaustion of microarchitecture resources. We first run only the victim to saturate the

link bandwidth capacity (bits per second) or the RNIC’s maximum request rate (requests

per second). We then start the attacker and measure the two metrics for both the victim
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and the attacker. If there is no microarchitecture resource contention, the sum of the

performance metrics of the two tenants should match the RNIC’s limit in the specification.

Modern RNICs specify their bandwidth capacity and request rate limits. If the sum of the

two tenants’ performance metrics falls below both specified limits, we attribute this to the

contention of microarchitecture resources. For example, assume there is no attacker, and

the victim can achieve 100 Gbps. However, with an X Gbps attacker, the victim reduces

to Y Gbps, and X ` Y ă 100. Let us also assume the total request rate is below the

RNIC specification. In this situation, we conclude that some microarchitecture resource is

bottlenecked. The traffic is using RC connection unless otherwise noted.

We test four types of 100 Gbps RNICs: NVIDIA ConnectX-5 EN and ConnectX-6

Dx, Chelsio T62100-LP-CR, and Intel E810. NVIDIA NICs runs RoCE, and the Chelsio

NIC runs iWARP. Intel E810 supports both RoCE and iWARP, but we currently only

test its RoCE implementation. RoCE and iWARP are two standard ways to run RDMA

over Ethernet-based networks. Our testbed consists of two servers, each equipped with an

RNIC, and the two RNICs are connected via a 100 Gbps switch. For NVIDIA RNICs, we

have access to their hardware counters, e.g., cache miss counters, through their network

adapter management tool NEO-Host [104]. These hardware counters allow us to pinpoint

which resource is oversubscribed. For example, when the ICM cache miss counter increases

quickly with a certain application workload, we learn that this workload heavily uses this

cache, making it oversubscribed. Since other RNICs do not expose such counters, we

experiment other RNICs based on their end-to-end performance metrics (e.g., bandwidth).

4.3.2 NIC Caches

We are aware that an RNIC has at least three types of caches, as shown in Figure 4.3. The

RNIC stores several types of metadata in these caches to accelerate the request process-

ing, such as the QP contexts in the ICM cache. Prior works have identified some RNIC

cache contention problems caused by data verbs with particular patterns. For example,

transmitting small messages across many RC QPs simultaneously and random accesses to
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Table 4.1: MR control verbs exhaust the MTT cache and reduce bandwidth.

Scenarios Alone Registration Deregistration

BW / Gbps 96.6 95.9 48.0

Miss Rate 17.2% 22.9% 49.1%

a large number of memory regions can cause certain types of severe cache misses (e.g., ICM

and MTT/MPT) [58, 96]. ScaleRPC [19] found that this scalability problem can reduce

the WRITE request rate by 90%.

In addition to these well-known problems, we observe a new, and even more severe way

to exhaust caches:

Key finding #1: control verbs can cause excessive cache misses and a drastic perfor-

mance reduction. Control verbs (e.g., ibv reg mr) are used to create and destroy objects

like MRs and QPs, which will be used by data verbs to transfer data. To the best of our

knowledge, there is no study on how control verbs consume RNIC microarchitecture re-

sources. We find that control verbs can easily trigger excessive cache misses, thus degrading

bandwidth and request rate.

We demonstrate this finding with a simple experiment on NVIDIA ConnectX-5 RNICs.

We let the victim tenant use 6 cores, 16 connections per core, to issue 512B WRITE

requests to exhaust the bandwidth capacity of the RNIC (i.e., 100 Gbps). Table 4.1 shows

the results. The victim can achieve 96.6 Gbps with 17.2% MTT cache miss rate. The

victim can still achieve line rate under such cache miss rate because QP multiplexing and

the RNIC pipeline design can mask the overhead of cache misses to some degree. We let a

single-threaded attacker keep registering memory regions (MRs) using ibv reg mr („5K

registration per second) on the victim’s sender side. In this scenario, the victim’s bandwidth

is almost not affected, staying at 95.9 Gbps with the miss rate slightly increased to 22.9%.

However, if the attacker keeps deregistering MRs, we can see a significant impact on the

victim: the cache miss rate increases to 49.1%, and the bandwidth degrades to 48 Gbps.

The overhead under such a high cache miss rate becomes significant and can no longer
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be masked by the RNIC processing pipeline. It is worthwhile to note that the attacker

does not need to issue any data verbs, so the attacker consumes no network bandwidth

or request rate at all. Fortunately, we observe that such interference is negligible at the

receiver side.

Compared with data verbs, we find that control verbs are easier to cause performance

interference. To overfill cache resources, we need to launch enough in-flight data verbs and

force them to randomly access a large number of objects (e.g., MRs). For example, on

NVIDIA ConnectX-5 RNIC, we find that it takes 6 threads to access more than 18K MRs

with 96 QPs to cause serious enough MTT cache misses that can degrade bandwidth by

40.1%. We believe cache misses due to data verbs will become less serious since RNIC

vendors keep increasing on-chip cache resources. In contrast, control verbs impact cache

resources by their special semantics instead of simply consuming them, and thus the impact

from control verbs can be hard to mitigate. For example, we speculate that the MR

deregistration may invalidate the entire MTT/MPT cache to avoid accessing outdated

MRs. This causes cache misses for accessing other MRs.

We also conduct the same experiments on Chelsio and Intel NICs, and we observe

similar results.

4.3.3 Processing Units

The RNIC has several processing units (PUs) to process verbs requests. Due to the lack

of public available counters to monitor the status of PUs, we use the request rate as the

metric to measure how PUs are consumed by different verbs. We summarize the following

two key findings:

Key finding #2: performance interference between different data verbs depends on the

complexity of verbs. Different data verbs have different complexities. Simple verbs, like

send and read, only copy data between machines. Complex verbs, such as fetch and add,

atomically add a 64-bit value to the memory of a remote address. This operation leverages

PCIe features (e.g., read-modify-write transactions), and may also acquire a lock on the
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target address. These complex verbs consume more PU resources, resulting in a lower

request rate [58]. Our new discovery here is that this difference in resource consumption

can also open a new pathway for performance interference through resource exhaustion: a

victim’s performance can be substantially penalized when colocated with an attacker that

uses complex verbs intensively.

To understand this effect, we first measure the data verbs request rate when competing

with other data verbs. We begin with the NVIDIA 100 Gbps ConnectX-5 RNIC. We set up

two workloads for each test, and each workload runs 8 QPs across 8 dedicated CPU cores

to saturate the RNIC’s rate. To avoid RNIC severe cache misses, we only use 128 QPs

in total and 16 MRs. We observe less than 1% cache miss in all the PU tests. To avoid

reaching the bandwidth capacity limit, we use 8B as the request size of all data verbs. We

first set up one workload (victim) using a particular type of data verbs, and then set up the

attacker workload with different types of data verbs. We show their request rate results in

72



Figure 4.4.

Our first takeaway is that in addition to the ATOMIC operations [58], the READ op-

erations are also more expensive than SEND/RECV and WRITE. When they are running

alone (as victim traffic), FAA and CAS only achieve 5.2 Mrps and 4.8 Mrps respectively.

READ achieves approximately 60 Mrps. SEND and WRITE can achieve more than 90

Mrps.

The second and the more important takeaway is that the contention behavior between

different combinations of data verb operations can vary. For example, when the victim runs

a READ workload alone, it can achieve 60 Mrps. If the attacker runs a CAS workload,

the victim’s request rate immediately drops to 3 Mrps. If the attacker runs a READ

workload, the victim’s request rate only drops to 30 Mrps. This means the complex verbs

(e.g., CAS) can consume more resources and penalize other colocated verb workloads. One

non-intuitive behavior we want to highlight is that the request rate of the victim running

FAA or CAS can actually increase if the attacker runs a SEND or WRITE workload under

this setting1.

We also conduct similar tests on 100 Gbps Chelsio T62100-LP-CR RNIC, and the results

are shown in Figure 4.5. This iWARP RNIC does not support ATOMIC operations. We

observe that the iWARP RNIC’s request rate for all types of data verbs is lower compared

with RoCE RNICs, which matches findings from previous works [142, 91, 22]. We find

that the contention among data verbs on Chelsio’s RNIC also varies. For example, the

victim with WRITE workload can achieve 4.76 Mrps without interference. The attacker

can cause the victim’s request rate to drop 55.0% with SEND workload and 73.1% with

READ workload. The specific patterns are different from NVIDIA RNIC, but this result

still demonstrates our key finding: the PU overhead of different data verbs varies.

Key finding #3: error handling can stall RNIC processing units and hang all the

applications. RNICs need to handle a few types of errors, including transport timeout

1 We report this to the RNIC vendor and this observation is acknowledged. However, the root cause
currently has not been figured out yet.
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(the responder side does not send an ACK or NACK), Receive Not Ready (RNR) error

(the responder does not have enough receive requests for arriving send requests), local

or remote protection error (the posted request does not reference a valid local or remote

memory region), and local operation error (an opcode is operated on the wrong type of

QP). Handling these errors require resources from RNIC processing units and some errors

can be expensive for RNICs to handle.

On NVIDIA ConnectX-5 and ConnectX-6 RNICs, we find handling RNR errors can

completely stall the RNIC processing units. For the victim, we use Perftest [108] to keep 128

outstanding 64KB WRITE requests on a single QP to saturate the bandwidth capacity.

For the attacker, we only use a single QP (i.e., the SEND application in the table) to

keep only one in-flight 4KB SEND request to consume a small amount of bandwidth. As

shown in Table 4.2, if the SEND application generates traffic normally (e.g., the responder

posts enough receive requests), it consumes 4 Gbps bandwidth, and the bandwidth for the

victim only drops approximately 3.5 Gbps. However, when the SEND application triggers

RNR errors (e.g., the responder side does not post any receive requests), both the SEND

application and the victim are stalled. We test this RNR errors with both directions and

see the same results. The reason is that the RNIC of the RNR receiver is stalled, and the

RNIC cannot even process the ACK packet. The victim therefore is stalled even when they

are sending traffics in the opposite direction.

We conduct the same experiments using both Intel and Chelsio NICs. We observe that

the victim’s QP connections are also terminated unexpectedly during data transfer for Intel

E810. Fortunately, we do not see such RNR issue for Chelsio T62100-LP-CR. Our best

guess is that the iWARP is designed on the top of TCP and aimed at running on a lossy

fabric, so it may have a more effective error handling mechanism.

4.3.4 PCIe Bandwidth

The RNIC is connected to the PCIe controller and transfers data from/to the CPU using

PCIe lanes. The impact of PCIe on the networking stacks has been studied by several prior

74



Table 4.2: The impact of RNR errors on bandwidth. The unit is Gbps.

Scenario Victim Bandwidth SEND Bandwidth

Victim Only 97.07 -

w/o RNR 93.53 4.01

w/ RNR 0.018 0

works [58, 94, 65]. Based on existing PCIe models, we further study how RDMA verbs

consume and even use up the PCIe bandwidth. Previous works have already identified

how RDMA loopback traffic can exhaust PCIe bandwidth [54, 64]. We therefore focus on

the normal RDMA TX and RX traffic. To transfer an RDMA message, PCIe introduces

the following types of extra bytes: (1) an MMIO to ring the doorbell on the RNIC (64B,

depending on cache line size), (2) a Work Queue Element (WQE) (36B or 64B), (3) the

PCIe protocol overhead (e.g., TLP headers), and (4) extra PCIe operations triggered by

cache misses. Our key observation for PCIe bandwidth is:

Key finding #4: PCIe bandwidth will only become the bottleneck when the request size

is in a specific range. We only need a single tenant to demonstrate this key finding. We run

the experiment on NVIDIA 100 Gbps ConnectX-5 RNIC. The PCIe bandwidth capacity

is 128 Gbps (PCIe Gen 3.0 x16). We use 96 QPs across 6 cores to saturate the PCIe TX

bandwidth. Each QP keeps 256 outstanding WRITE requests. We vary the request size

and collect both the NIC and the PCIe bandwidth consumption by reading the RNIC’s

counters. The result is shown in Figure 4.6. We first observe that when the payload size

is small, the commodity RNIC can mitigate the WQE overhead by embedding the small

message in the WQE. As shown in the green rectangle, when the request size is smaller

than 28B, increasing the request size does not cause more PCIe bandwidth consumption

because the payload is embedded in the same MMIO operation with the WQE.

Our second observation is that PCIe TX bandwidth may only become the bottleneck

when the payload size of the request is in a specific range. The reason is that short

requests are first throttled by the request rate before exhausting PCIe bandwidth while

large requests are always throttled by the RNIC’s bandwidth capacity. We confirm this
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observation through a theoretical PCIe consumption model and we present two concrete

examples. We assume the network MTU is 4096B and the maximum payload per PCIe

transaction is 128B (the worst setting to maximize the PCIe overhead). The TLP overhead

depends on the implementation [94] and we assume it as 20B, a typical size for a PCIe

3.0 device. Transmitting a 29-byte message will consume at most 127 network bytes and

at least 189 PCIe bytes [135, 58]. Therefore, to saturate the link bandwidth (100 Gbps),

we need at least 148.8 Gbps PCIe bandwidth, which is much larger than the PCIe 3.0x16

capacity. §4.10 includes the detailed computation. Our measurement shows that the actual

consumption can be even higher, as shown in Figure 4.6. The consumption model for PCIe

RX bandwidth (i.e., the RNIC to the host) is similar to that of TX. Additionally, too many

cache misses may also cause high PCIe bandwidth consumption due to lots of PCIe reads

to fetch metadata. However, in most scenarios, the large number of cache misses will first

slow down the RNIC execution (e.g., introduce extra latency) and the PCIe bandwidth

is therefore less consumed. In our measurement of cache misses, we do not observe cases

where PCIe TX bandwidth is exhausted.

Both the theoretical model and our experimental results demonstrate that the PCIe

bandwidth can become the bottleneck, but only for a particular request size range.
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4.3.5 Other findings

We also have several other interesting findings. In the interest of space, we only briefly

present them here. However, we do use these findings to guide our test suite design in §4.4.

Other finding #1: Data verbs contend for different RNIC caches. We conduct the

scalability test using different data verbs, and observe different types of cache contention.

For example, a large number of RC QPs that issue READ and WRITE will mainly cause

ICM cache misses. A large number of UD QPs that issue SEND/RECV requests or many

RC QPs that issue ATOMIC requests can cause severe RECV WQE cache misses. This

observation indicates that data verbs contend for cache differently, similar to the contention

on RNIC PUs.

Other finding #2: Wide range access across many objects (QP, CQ, MR) causes ICM

cache misses. The scalability issue has been well studied, but our measurement reveals

new observations. In addition to QP and MR, the context of the completion queue (CQ)

is also stored in the ICM cache. Thus, accessing a large number of CQs can also trigger

severe ICM cache misses. In addition, allocating a large number of these objects does not

necessarily cause severe ICM cache misses. Wide range access across the objects (i.e., poor

locality) is the key to triggering severe ICM cache misses and performance degradation.

Other finding #3: The impact of control verbs is restricted by its kernel involvement.

We observe that all control verbs are first processed by the kernel drivers, thus causing

expensive context switch. The execution rates of these control verbs are usually throttled

by the kernel instead of RNIC processing. Therefore, control verbs have a limited impact on

exhausting RNIC PUs. However, they can still cause significant performance interference

and affect the other applications by triggering severe cache misses, as our key finding #1

shows.

4.3.6 The Resource Consumption Model

We summarize our findings in an RDMA operation model shown in Figure 4.7. This model

describes which microarchitecture resource a verb operation consumes heavily. Note that
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a verb operation can also use other microarchitecture resources that are not captured by

our experiments. This is because the usages of these resources are low and do not lead

to resource contention. This model is qualitative: we do not try to understand the exact

resource usage since we have no visibility into proprietary RNIC hardware. For example,

we know a certain traffic pattern can trigger a certain type of cache misses, but we does

not figure out the total size of the cache or how much of the cache an operation consumes.

Even so, we show that this model is sufficiently powerful for us to create the first test suite

for RNIC performance isolation, and it can capture a wide range of workloads that can

break existing performance isolation solutions.

4.4 The Husky Test Suite

After we understand how different RDMA operations use these microarchitecture resources,

we can design a test suite to evaluate performance isolation solutions. Our goal is the

following: given an RNIC hardware and a performance isolation solution, we want to find

a set of workloads combinations for an attacker and a victim that can break the performance

isolation. We need to check different victim workloads for completeness because different

victim workloads are sensitive to exhaustion of different microarchitecture resources.

Our test suite must be general: we will use it to test various RNIC performance isolation
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solutions on different RNICs. This means we cannot rely on tools and features from specific

vendors, such as Mellanox Neo-Host [104]. In addition, different RNICs have different

amounts of microarchitecture resources. And existing performance isolation solutions may

only be able to mitigate contention on specific resources.

To this end, we build Husky to systematically test and evaluate RNIC performance

isolation solutions. Husky targets at four types of resources: NIC bandwidth, PCIe band-

width, NIC PU, and NIC cache. For each type of resource, we design synthetic workloads

with different types of behaviors (e.g., control verbs) to exhaust this resource. More specif-

ically, we exhaust NIC BW with long messages using different opcodes (e.g., WRITE); we

exhaust PCIe bandwidth with loopback traffic and specific message patterns (from key find-

ing #4); we exhaust NIC PU with expensive data verbs (key finding #2), small messages,

or error handling behaviors (key finding #3); we exhaust different types of RNIC cache

with intensive control verbs (key finding #1) and a wide range access of data verbs. We

vary parameters (e.g., connection types) of some synthetic workloads to be more inclusive.

In all, Husky includes 52 attacker synthetic workloads (6 for NIC BW, 4 for PCIe BW,

14 for NIC PU, and 28 for NIC cache) and 20 synthetic victim workloads. Many of the

attacker workloads cannot be directly generated with existing RDMA traffic engines. We

therefore extend Collie [64]’s traffic engine, the most flexible one to the best of our knowl-

edge, to generate these synthetic RDMA traffics, including flexible control verbs workloads

and error handling workloads.

Husky’s framework can also easily allow running real applications as additional victim

workloads. Husky currently contains two real applications, including the OSU bench-

mark [105] and eRPC-based Masstree key-value store [56, 77]. The OSU benchmark con-

tains workloads such as allreduce and allgather. Note that we can integrate any RDMA

applications into Husky. We test all the (victim, attacker) workload pair exhaustively from

our test suite.

One key question is how to define a violation of performance isolation. Our definition

of violation depends on the concrete isolation solution.
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Husky uses a user-specified predicate to compute the expected performance results

when isolation is enabled. Husky compares the actual performance with the expected

performance to identify violation. For example, most of existing performance isolation

solutions only provide bandwidth guarantee. The expected performance for these isolation

solutions therefore is a guaranteed bandwidth, Bg. We assume the application can consume

bandwidth of Ba when running alone. The bandwidth of this application should be at least

p1´ αqminpBa, Bgq under any attacker workload, where α is a tolerance level. A lower α

means stricter isolation. We use an example to demonstrate how this definition works: let

us assume that attacker and the victim are configured to share the same 100 Gbps network

and we set α to be 25%. If the victim can achieve 60 Gbps when running alone, it should

be able to achieve at least p1 ´ 25%qminp60, 50q “ 37.5 Gbps under the attacker’s work-

load. If the victim can only achieve 10 Gbps when running alone, its consumed bandwidth

should not be less than p1 ´ 25%qminp10, 50q “ 7.5 Gbps. In practice, we find all exist-

ing performance isolation solutions for commodity RNICs are bandwidth guarantee or can

be translated into bandwidth guarantee. We use this definition for performance isolation

violation in §4.5 and set α to be 25%.

4.5 Evaluation

We use a NVIDIA testbed to evaluate existing RDMA performance isolation solutions.

There are two servers in the testbed, and each is equipped with one 100 Gbps NVIDIA

ConnectX-5 RNIC. The server is equipped with Intel Xeon Gold 5215 CPUs, and the

RNICs are connected to the server through PCIe 3.0 x16. The RNICs are connected to a

100 Gbps NVIDIA switch. We use Ubuntu 20.04 and the kernel version is 5.11. For NVIDIA

NICs, the kernel drivers and verbs libraries are both from 5.4-OFED. The firmware version

is 16.31.1014. We also conduct all the experiments also on NVIDIA ConnectX-6 RNICs

and the result is similar.

We evaluate 3 different isolation solutions provided by RNIC vendors and prior work:
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(1) NVIDIA separate hardware traffic class (HW TC). Cloud operators can set separate

TCs for different tenants to use, which separate the RNIC bandwidth and packet buffers

[82] to enforce performance isolation. Modern RNICs typically only have 8 traffic classes.

This means we cannot use HW TC when we want to colocate more than 8 tenants in a

physical server. (2) NVIDIA SR-IOV. Though the SR-IOV technique is designed for hard-

ware virtualization, it provides separate virtual functions with some separated resources

to different tenants and actually achieves some degrees of performance isolation [84]. (3)

Justitia, a software-based performance isolation solution [142]. Justitia implements data

verbs rate-limiting and pacing in RDMA userspace libraries to enforce performance isola-

tion. This means Justitia has no security: malicious applications can easily circumvent the

userspace library. Although Justitia’s software architecture does not target a multi-tenant

public cloud environment, we still use Husky to evaluate the effect of its isolation policy

(e.g., its token-based algorithm). We also evaluate all the possible combinations of the

above solutions2. Unfortunately, though we have a testbed with Chelsio T62100-LP-CR

and Intel E810 NICs, we did not enable their hardware-based isolation mechanisms. Justi-

tia also does not support Chelsio or Intel drivers. We therefore are not able to conduct the

same evaluation on Chelsio or Intel NICs. 3

4.5.1 Testing Existing Performance Isolation Solutions

Based on the types of verbs and the exhausted resources, we categorize the workloads

generated by Husky into 6 groups. We distinguish the error handling of RC from UD &

UC because they cause different behaviors of RNIC PU, and we observe some isolation

solution (e.g., SR-IOV) provides different degrees of isolation on these PU behaviors.

We first take a look at the hardware-based isolation mechanism provided by NVIDIA.

2 We do not test Justitia with SR-IOV because Justitia only isolates traffic through the same device.
When SR-IOV is enabled, tenants are using different devices (i.e., VF) and Justitia does not work for that
scenario.

3 We contact the NIC vendors and have multiple rounds of conversations with their experts. However, we
still fail to enable any hardware isolation solution for RDMA on both NICs. In addition, we are not aware
of any prior work that can set up such RDMA isolation.
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Table 4.3: Performance isolation violation caused by exhausting microarchitecture resource.
Justitia can only provide isolation among applications using the same function, so cannot
be combined with SR-IOV. 3 means performance isolation is properly enforced. 7 means
Husky can find a workload pair (attacker, victim) to violate performance isolation by
exhausting microarchitecture resources.

Resource Processing Units RNIC Cache PCIe BW

Isolation
Mechanism

Error Handling
(RC)

Error Handling
(UD & UC)

Data Verbs Control Verbs Data Verbs Data Verbs

SR-IOV 3 7 7 7 7 7

HW TC 7 7 7 7 7 7

SR-IOV + HW TC 3 7 7 7 7 7

Justitia 7 7 3 7 7 7

Justitia + HW TC 7 7 3 7 7 7

For NVIDIA SR-IOV, we enable two virtual functions (VF) and assign both the victim

tenant and the attacker tenant with one VF. We also enable the VF-based rate limiter

and restrict the maximal TX bandwidth of each tenant to be 50 Gbps, which is a typical

fair sharing setting for the public multi-tenant environment. Given this configuration,

we therefore define the isolation violation for NVIDIA SR-IOV as the victim’s consumed

bandwidth (in terms of bits per second) being reduced by the attacker to less than p1 ´

αqminp50, Baq, where α is 25% and Ba is the victim’s bandwidth without attack. For

NVIDIA HW TC, we assign each tenant with a dedicated TC. For example, the victim

exclusively uses TC 0 and the attacker exclusively uses TC 3. We configure TC 0 and

TC 3 to equally share the RNIC bandwidth and the NIC buffer (which stores the packets,

different from the cache). The violation definition for NVIDIA HW TC therefore is the

same as that of NVIDIA SR-IOV.

The first three rows of Table 4.3 show the isolation effect provided by SR-IOV, HW

TC, and the combination of them. Unfortunately, we find both SR-IOV and HW TC

fail to provide enough isolation on RNIC’s microarchitecture resources. For example, by

exhausting RNIC’s cache through either control verbs or data verbs, Husky can successfully

affect the colocated victim’s applications, even when both SR-IOV and HW TC are enabled.

The key reason is that both SR-IOV and HW TC only isolate the architectural resources

(e.g., link bandwidth) and do not restrict the cache usage of a single tenant. Husky therefore
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is able to use an attacker workload that exhausts RNIC cache, such as MTT/MPT cache.

Other applications would suffer from severe cache miss and hence the performance drop.

In addition, we find that although SR-IOV is mainly aimed at virtualization, it has indeed

enforced some isolation, especially for RNIC PUs. The RC RNR error handling can cause

RNIC PUs to pause and even hang the colocated applications if there is no performance

isolation mechanism enabled. With SR-IOV, the RC RNR error does not affect tenants

running on other VFs. However, the similar RNR exception handling process for UD and

UC still violates the isolation of SR-IOV. Due to the RNIC’s black box nature, we do not

know the root cause of such a difference. Our best guess is that some part of the RNIC’s

PUs (e.g., that handles RC RNR) is isolated by different VFs, while other parts are not

well isolated. These hardware-based solutions also cannot isolate PCIe bandwidth well. We

observe that an attacker can consume substantial PCIe bandwidth and reduce the victim’s

usable bandwidth.

We then evaluate the software-based solution, Justitia. Justitia is not designed for the

public cloud and requires the tenant to cooperate (e.g., using modified RDMA libraries).

Husky can certainly break its isolation by bypassing the modified libraries, but this would

defeat the purpose of testing Justitia. We therefore require all of Husky’s traffics (both

the victim and the attacker) to go through Justitia’s modified drivers and be paced by

Justitia. In addition, Justitia only supports limited types of data verbs on the latest

drivers (i.e., mlx5), so we restrict the applications to only use the opcodes that Justitia

supports. Justitia aims at providing each tenant a fair share of the NIC resource. We only

set up two tenants, so we simply define the violation of Justitia as the victim’s bandwidth

is less than p1 ´ αqminpBa, 50q, similar to the definition for SR-IOV. We also test the

combination of Justitia and HW TC.

As shown in Table 4.3, Justitia does provide some PU isolation but to a limited extent.

For example, Justitia takes the RNIC’s request rate (i.e., execution throughput) into its

isolation consideration. It therefore uses a pacer to control the request rate for each tenant

and successfully prevent a single tenant from posting a large number of requests to exhaust
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the PUs. However, its isolation is violated when the attacker keeps posting requests that

trigger error handling on the RNIC. The reason is that these errors are detected and

handled by RNIC, which is out of Justitia’s control. In addition, Justitia does not take

cache and PCIe into consideration. The attacker tenant therefore can still exhaust the

RNIC cache and PCIe bandwidth and cause other tenants to suffer from excessive cache

misses or low usable PCIe bandwidth.

It is worthwhile to note that these solutions already provide more or less tolerable

isolation for architectural resources, e.g., NIC bandwidth. Husky includes a set of workloads

that only contend for NIC bandwidth, and we do not see such violation on those workloads

when enabling these solutions. However, ignoring microarchitecture resources makes these

solutions insufficient for real public cloud deployment.

4.5.2 Impact for Real Applications

Next, we conduct experiments on a larger testbed to study how microarchitecture resource

exhaustion impacts real application workloads when using state-of-the-art performance

isolation solutions. We use the allreduce workload [105] on an RDMA-based MPI imple-

mentation [106] and eRPC-based Masstree (a key-value store) [56, 77] as two real victim

applications. Our testbed consists of four physical servers. Each server is equipped with

one 100 Gbps NVIDIA ConnectX-5 RNIC. The other settings are the same as §4.5.1. The

victim applications run their VMs on all the four servers. The attacker tenant controls two

VMs, each on a different server. We set up the testbed this way to emulate a real multi-

tenant environment because an attacker may not have VMs colocated with all the victim’s

VMs. However, our results demonstrate that violation of performance isolation in a sub-

set of the victim’s VMs is already enough to substantially reduce the overall end-to-end

performance of the real distributed applications.

For protection mechanisms, we enable either SR-IOV + HW TC or Justitia + HW

TC to provide isolation for the collective communication application. For eRPC-based

Masstree, we only enable SR-IOV + HW TC. This is because Justitia only supports high-
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performance RDMA WRITE on the latest NVIDIA drivers, but eRPC-based Masstree

leverages UD SEND/RECV for its communication.

We use four types of attackers from the Husky test suite to demonstrate our results:

(1) BW attack is the baseline. We use the standard Perftest [108] ib write bw to set up

a bandwidth-hungry application. It uses 16 RC QPs and each QP keeps 128 outstanding

1 MB WRITE requests to saturate the link bandwidth (consuming „50 Gbps when rate

limiter is enabled). BW attack does not target any microarchitecture resources. (2) PCIe

attack exhausts PCIe TX bandwidth. It runs 36 RC QPs on 6 cores and keeps 128 out-

standing 257 B WRITE requests. It also consumes almost 50 Gbps link bandwidth (less

than 20 Mrps) but causes more than 73 Gbps PCIe TX bandwidth consumption. This

leaves only about 50 Gbps usable PCIe TX bandwidth (i.e., less than 50 Gbps usable net-

work bandwidth) for the victim. (3) Cache attack exhausts RNIC cache. It runs 1536 RC

QPs on 6 cores, uses 12288 MRs and each QP keeps only a single 256 B outstanding request.

This attacker causes severe cache miss and only uses less than 7 Gbps link bandwidth (i.e.,

3 Mrps). (4) PU attack pauses RNIC PUs. It runs 1 UC QP on a single core and keeps 128

outstanding SEND/RECV requests. Its receiver side does not post any receive requests, so

the RNIC has to handle many receive not ready exceptions. It consumes less than 0.5 Gbps

and less than 0.5 Mrps.

We begin with testing the RDMA-based allreduce workload. Allreduce is a collective

communication operation widely used in distributed deep learning training. It aggregates a

vector across all workers and propagates the result back to all workers. We set up 2 workers

on each host (8 in total) to run allreduce. The allreduce buffer size is set to 1 MB. We

run allreduce continuously and record the execution rate (allreduce operations per second).

The raw rate without any isolation mechanism and interference is shown as the leftmost

bars in the figure. The bar of no attack indicates the effect of enabling these isolation

solutions. When Justitia is enabled, the allreduce rate drops by 38.5%. One possible

reason is that Justitia uses a shim layer (the pacer) to exert sender admission control,

which introduces extra performance overheads compared to the hardware-based solutions.
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Figure 4.8: Allreduce results under exhaustion of different resources.

Since the allreduce workload only uses less than half of the NIC bandwidth (23 Gbps),

its performance under attack should be at least p1 ´ αqPa, where α is 25% and Pa is its

performance without any attack. We can then compute a violation threshold in allreduce

rate for each isolation solution based on the bandwidth the victim should consume.

The result for allreduce is shown in Figure 4.8. The horizontal red lines show the viola-

tion threshold. Bars under the red line indicate isolation violation. Pa for the application

with Justitia + HW TC is 38.5% lower than that with SR-IOV + HW TC. This means the

violation threshold is also 38.5% lower for Justitia + HW TC. We first observe that the

BW attack only causes a negligible performance drop for SR-IOV + HW TC setting. And

Justitia + HW TC also achieves the bandwidth isolation goal within the tolerance. We

then observe that all the PCIe, Cache, and PU attacks successfully violate the isolation

provided by either Justitia + HW TC or SR-IOV + HW TC. For example, the PCIe attack

can cause the performance of the allreduce application to drop 27.3% for SR-IOV + HW

TC and 42.1% for Justitia + HW TC. The impact of the Cache attack is more significant.

Allreduce workload’s performance drops more than half (71.3%) for Justitia + HW TC and

almost half for SR-IOV + HW TC. We observe that the PU attack is the most powerful.

It can directly stall the allreduce application by exhausting the RNIC PUs.

We use the same set of attackers to test the eRPC-based Masstree. We use the default

setting of eRPC-based Masstree (e.g., key size and the number of threads). We set up the
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Figure 4.9: Mastree’s GET rate under exhaustion of different resources. colocated means
that the client and the attacker are on the same host. Non-colocated means that they are
on different hosts.

key-value server in one physical server and three clients each in a different physical server.

We colocate one attacker VM with the key-value server and another attacker VM with

one of the clients. We collect the execution rate (in terms of the number of GET requests

per second) and the latency from all the clients. The Masstree server only uses 14 Mrps

and less than 20 Gbps, so we define the isolation violation as the same as the violation of

allreduce. Figure 4.9 and Figure 4.10 show the GET rates and the latency results. The

SR-IOV + HW TC more or less achieves the BW isolation goal within tolerance. We find

that all microarchitecture resource exhaustion attacks successfully violate the isolation for

the client that is colocated with an attacker VM. Similar to the allreduce workload, the

PU attacker stalls the entire key-value store system. Worse still, it even pauses the clients

that are not colocated with an attacker VM. This is because we stall the key-value server.

Another observation is that the performance of eRPC-based Masstree is impaired by

the cache exhaustion attack but to a very limited extent. One possible reason is that the

eRPC leverages UD transport. A UD QP does not need as much connection metadata as

an RC QP does and therefore is less sensitive to the RNIC internal cache miss. In addition,

we find that the Masstree is more sensitive to PCIe exhaustion. This is probably due to

its small request size. According to our key finding #4, requests of a relatively small size

cause more extra PCIe TX bandwidth consumption.
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Figure 4.10: Mastree’s latency under exhaustion of different resources.

We have several high-level takeaways from the real application results.

Takeaway #1: targeting microarchitecture resources makes violating performance iso-

lation easy. If we treat the RNIC as a black box, it is quite difficult to break performance

isolation. The BW attack targets the bandwidth resource, and we observe that all the ex-

isting solutions provide good protection. However, once we know a few more details about

how an RNIC works (e.g., the potential microarchitecture resources), breaking isolation be-

comes simple. Our attack is very efficient. For example, Cache Attack only needs 7 Gbps

and 3 Mrps. PU Attack stalls victims with even less bandwidth and request rate. Note

that these attacks are only targeting publicly disclosed microarchitecture components.

Takeaway #2: applications’ sensitivity for resource contention is different. Applica-

tions’ end-to-end performance drops can be quite different even for the same attack. The

allreduce application is more sensitive to the cache exhaustion while the Masstree is more

vulnerable to the PCIe exhaustion.

Takeaway #3: distributed applications need performance isolation on every single

server. For both applications, the attacker only has two VMs, but why does the application-

level performance drop substantially even if the application is running across four machines?

Many modern distributed systems’ performance is usually bottlenecked by a few slowest

workers in the system. For example, in allreduce, each iteration requires synchronization

of all workers. Thus, our attack on one or two workers can slow down the entire allreduce
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procedure.

4.5.3 Analysis for Existing Solutions

Our evaluation shows that all existing approaches fail to provide RDMA performance

isolation.

We now analyze the fundamental restrictions of these solutions and some potential

improvements we may achieve.

SR-IOV and separate HW TC. These hardware based solutions already provide some

hardware resource isolation (e.g., the hardware queue and the on-NIC packet buffer). The-

oretically, RNIC vendors should be able to incorporate more hardware isolation features

to these solutions. For example, to statically separate NIC PU or partition NIC cache

for different VFs can help to build a better isolation mechanism for SR-IOV. However,

these hardware modifications are non-trivial and can hardly be applied to existing hard-

ware. RNIC vendors usually release these new features together with their new hardware

products. Cloud providers thus cannot use these features in existing hardware.

Justitia. Justitia uses delay to track resource contention and paces RDMA data verbs

to allocate network bandwidth and executing rate among different tenants. As originally

designed, Justitia does not provide isolation for control verbs or some RNIC resources (e.g,.

RNIC cache). It is possible that Justitia could be modified to control more resources, but

this requires more investigation. For example, the delay-based verbs pacing approach

taken by Justitia could possibly detect RNIC cache resource contention as increases in

latency and pace tenants’ rate accordingly. However, it is unclear if this approach could

accurately detect contention and if this approach would be responsive enough to prevent

SLO violations from interference. Further, it is likely that having the RNIC provide per-

tenant cache usage statistics could lead to a simpler and more accurate solution.
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4.6 Guidelines

Our results show that, unfortunately, no existing RNIC performance isolation solution is

sufficient. We analyze the failure of existing isolation solutions based on our key findings,

and we present several design guidelines for potential future RDMA performance isolation

work. These guidelines may also be helpful for RDMA application developers to write

better RDMA applications under multi-tenant environments.

Hardware support for isolation is needed. Software approaches like Justitia [142] have

a common problem. They only monitor architecture-level metrics, e.g., latency, band-

width, and request rate. They cannot detect contention in microarchitecture resources,

e.g., caches, let alone manage and fair share those resources. We believe future perfor-

mance isolation solutions will have to leverage hardware support, similar to how modern

hypervisors can use Intel Resource Director Technology (RDT) to monitor and manage

access to the last-level cache and memory. NVIDIA RNICs expose several useful hardware

counters, but they are still insufficient. For example, we can only observe cache misses,

but we cannot manage the cache access or split the cache for different tenants.

A layer of indirection is needed. RDMA means kernel bypass for data verbs. This

enables low latency and reduced CPU overheads. So where should performance isolation

be enforced? We believe that future performance isolation solutions will require a layer

of indirection either in NIC or in software. Having the enforcement point in the userland

RDMA library (as Justitia) does not work, because it lacks security. Instead, a software

indirection can have a microkernel-like design, with a set of cores running the isolation logic

in a separate protection domain [81]. RDMA performance isolation should be enforced in

such a central controller that takes over both control verbs and data verbs.

Programmer, compiler, and library support for RDMA applications. After a future

performance isolation solution is invented, applications may need modification as well. If

the future performance isolation solution requires strict partitioning of microarchitecture

resources, this means each application has limited microarchitecture resources to use and
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can lead to substantially reduced performance. The amount of microarchitecture resource

an application uses may also vary (depending on how many other tenants are on the same

server or other configurations). Building high-performance RDMA applications will require

additional effort for the programmer, compiler, and application library to efficiently use

these limited resources. For CPU cache, these efforts occurred in the research community

two decades ago [68, 80, 66].

4.7 Discussion

The impact of broken RDMA performance isolation. Our evaluation shows that a mali-

cious tenant can cause other tenants’ to suffer from drastic performance drop or even get

stuck. In addition, a broken performance isolation exposes vulnerability for malicious users

to conduct side-channel attacks. Since the tenant can affect others’ performance on the

same host, it can set up side channels that leak access patterns of victim nodes or deliver

information by affecting the host’s performance in a pattern [126]. RDMA performance

isolation therefore is a critical feature for a secured RDMA public cloud.

What RDMA performance isolation solution should cloud providers use today? One

good news is that we are not aware of any cloud provider that currently using commodity

RNICs to provide RDMA-capable VMs with partitioned host resources. To rent an RDMA-

capable VM, customers have to rent the entire physical machine. This means currently we

do not need an RNIC performance isolation solution at all, because the RNIC only runs

a single tenant’s traffic. To move forward to multi-tenant usage of an RNIC, we believe

performance isolation is still a major blocker, and multi-tenancy should not be enabled

until a mature performance isolation solution is ready, one that can at least pass our test

suite.

Generalizability to other kernel bypass host networking architectures. Our test suite

design is based on the verbs interface, which is RDMA-specific. However, we believe our

methodology should be generalizable to find violations of performance isolation in other
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kernel bypass architectures, e.g., DPDK [29], 1RMA [123], as these implementations com-

monly require RDMA-like mechanisms in the DMA portion of the design. The industry

trend today is to offload functions to hardware accelerators. For example, RDMA is offload-

ing congestion control and reliable message delivery into the hardware. Microarchitecture

resources in hardware are critical to delivering these offloaded functions. Paying attention

to these microarchitecture resources for performance isolation is going to be increasingly

important.

4.8 Related Work

Microarchitecture resources in RNICs. The existence of RNIC microarchitecture resources

is well-known in the networking community, and many studies focus on how to design

RDMA applications to circumvent certain RNIC performance anomalies due to these re-

sources. For example, HERD [57], FaSST [59], and eRPC [56] avoid using RDMA reliable

connection to mitigate the QP context cache miss for better scalability. ScaleRPC [19]

and Flock [92] multiplex reliable connections in a time-sharing manner to mitigate the

scalability problem. Kalia et al. [58] studies the RNIC’s PCIe behaviors and provides

guidelines for writing efficient RDMA programs. Unfortunately, these works only focus on

optimizing applications to fully utilize the limited resources in RNICs. However, public

cloud providers cannot control the third-party tenants’ applications. Collie [64] conducts

a systematic search on RDMA performance anomalies, and the anomalies are mostly due

to oversubscribed microarchitecture resources. However, since Collie only focuses on first-

party traffic, it just builds a search space based on normal operations. It therefore only

considers normal data verbs and fails to uncover findings related to other types of be-

haviors. For example, the key findings #1, #2, and #3 in §4.3 are fundamentally not

covered by Collie’s search space because Collie does not take control verbs, error handling,

and expensive atomic verbs into consideration. In all, prior works focus more from the

perspective of application developers. Our work is on a complementary aspect by looking
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from the public cloud provider’s perspective: how these microarchitecture resources affect

performance isolation. This requires us to be microarchitecture resource aware and take a

look at all types of RDMA behaviors, including control verbs and error handling, because

we need to deal with misbehaving and even malicious tenants.

Other NIC performance isolation solutions. PicNIC [65] provides isolation for both

packet processing and bandwidth on NIC. This allows latency-bound workloads not to

be affected by bandwidth-bound workloads. FairNIC [37] isolates resources in SoC-based

SmartNICs. Compared with them, our work focuses on the RDMA-related resources on

NICs.

Performance isolation in other contexts. Performance isolation problems are not limited

to NICs. Other server hardware components also have this issue, and they already have

corresponding solutions. There exist several partitioning techniques for CPU caches [25, 43]

and memory bandwidth [46]. Network bandwidth in the network fabric is also a crucial

resource to isolate [114, 121, 111, 13, 14, 38, 134, 9, 69, 53, 112, 20, 52] as well as the switch

processing piplines [130].

4.9 Summary

RDMA is a promising networking technology to enable low latency and high CPU efficiency

in datacenter networks. To enable RDMA in a multi-tenant environment, performance iso-

lation is an important property, and RDMA NICs (RNICs) bring new challenges due to the

existence of microarchitecture resources (e.g., RNIC cache, processing units). We present

an RNIC operation model on how these resources are used by different RDMA operations.

Using this model, we create Husky, the first test suite to evaluate RNIC performance iso-

lation solutions. Our results show that none of the existing RNIC performance isolation

solutions provides sufficient isolation against workloads that try to exhaust these microar-

chitecture resources. Our findings are acknowledged and reproduced by one of the largest

RDMA NIC vendors. The insights from this work lay the foundation for a comprehensive
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isolation solution, Harmonic, presented in the next chapter.
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4.10 Appendix 1: Network v.s. PCIe

To transmit a payload through Ethernet-based IP-routed RDMA network (i.e., RoCEv2),

the network protocol introduces the following overhead.

1. Ethernet overhead. Each Ethernet frame includes 14-byte Ethernet (exclude VLAN)

header and 4-bytes CRC as L2 overhead. In addition, each Ethernet frame has L1

overhead - each frame is preceded by a 7-byte preamble and 1-byte start-of-frame

delimiter. The frame is also followed by an inter-frame gap. The gap should be at

least 12-byte. The total Ethernet overhead per frame therefore is 38-byte [50].

2. IP overhead. IP overhead comes from the IP header, with a least size 20-byte.

3. UDP overhead. UDP overhead comes from the 8-byte UDP header.

4. Infiniband overhead. The Infiniband protocol implements headers inside the UDP

payload. A simple WRITE message through reliable connection (RC) needs 12-byte

Base Transport Header (BTH), 16-byte RDMA Extended Transport Header (RETH),

and 4-byte invariant CRC. Hence, the Infiniband protocol overhead is at least 32-

byte [10].

To transmit the payload from the host DRAM to the RNIC, the RNIC PCIe behaviors

include the following overhead.

1. Ringing the doorbell. To post a work request, users need to ring the RNIC’s doorbell

through memory-mapped IO (MMIO). Each MMIO has a fixed aligned size 64-byte.

2. Work Queue Element. The RNIC needs to fetch a work queue element (WQE) from

host DRAM to the NIC. A WQE for RC/UC is 36-byte, and 68-byte for UD.

3. TLP overhead. Each PCIe transaction has PCIe Transaction Layer Packet (TLP)

header, and the header size varies for different PCIe implementation. We assume its

least size as 20-byte according to [135, 58].
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We next shows the computation of the 29-byte payload example in §4.3. The 29-byte

payload is obviously less than the MTU, and can be sent using a single network packet.

Therefore, the network bytes consumed by this payload is:

Bytes(network) “ Bytes(payload)` Bytes(Ethernet)

`Bytes(IP)` Bytes(UDP)` Bytes(IB)

“ 29` 38` 20` 8` 32

“ 127(bytes)

For PCIe consumption, the 29-byte payload is larger than the maximal inline size (28-

byte). So it cannot be delivered in the same PCIe transaction as the WQE. It therefore

needs three PCIe transactions: (1) Doorbell, (2) WQE, and (3) payload, and consume the

following bytes:

Bytes(PCIe) “ Bytes(payload)` Bytes(payload TLP)

`Bytes(WQE)` Bytes(WQE TLP)

`Bytes(Doorbell)` Bytes(DB TLP)

“ 29` 20` 36` 20` 64` 20

“ 189(bytes)

Therefore, the PCIe consumption for such payload when saturating the link capacity

(100 Gbps) is:

Bandwidth(PCIe) “ Bandwidth(network) ˚
Bytes(PCIe)

Bytes(network)

“ 100 ˚
189

127
“ 148.8(Gbps)
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4.11 Appendix 2: Response from NIC Vendors

We report our findings and results to the NIC vendors, including NVIDIA, Intel, and

Chelsio. NVIDIA, one of the largest RDMA NIC vendors, has spent substantial effort on

acknowledging and reproducing our experiments. They have successfully reproduced all

of our findings in their own environment. In addition, NVIDIA provides us with detailed

analysis and feedback. We would like to share them here.

Key finding #1: control verbs can cause excessive cache misses and a drastic perfor-

mance reduction. NVIDIA provides a more accurate analysis of this finding: the deregis-

tration control verbs can cause drastic performance reduction mainly because of the NIC

internal QoS scheduling policy. The deregistration control verbs have higher priority than

other types of operations and will be scheduled first. Consequently, these deregistration

verbs trigger excessive cache misses and cause the performance to drop drastically. NVIDIA

has already figured out a solution to address this issue. The high-level idea is to tune the

NIC internal QoS policy so that deregistration does not have such a high priority. They

are planning for a firmware upgrade to fix this issue.

Key finding #2: performance interference between different data verbs depends on

the complexity of verbs. NVIDIA is familiar with this phenomenon and will roll out new

firmware upgrades to address this issue.

Key finding #3: error handling can stall RNIC processing units and hang all the

applications. NVIDIA provides a more accurate explanation of this phenomenon: for

unreliable transport types (UC and UD), there is not the same specific RNR exception

handling procedure as RC. Instead, they have other processing logic that involves firmware

that handles out-of-order packets. This is the root cause of the performance interference

when attacking using unreliable transport types. NVIDIA also provides a potential solution

to mitigate such interference. NVIDIA Connect-X series NICs support monitoring per-

VM consumption of the NIC resources. The cloud operators therefore can enforce VM

capabilities policy based on the visibility of NIC resources consumption. Furthermore,
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NVIDIA is planning to introduce an additional layer of protection in the coming NIC

firmware/hardware release to completely eliminate the attack vector for RC.

Key finding #4: PCIe bandwidth will only become the bottleneck when the request

size is in a specific range. Though PCIe bandwidth contention is not a unique interference

brought by RDMA, NVIDIA still acknowledged and confirmed our observation on the PCIe

consumption for RDMA NIC.

We thank NVIDIA for their kind and great support. We believe the above under-

standing will benefit cloud operators and RDMA application developers. In addition, our

collaboration with NVIDIA also demonstrates how Husky can help to improve existing

RDMA solutions and build robust RDMA performance isolation in the future.
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5. Enabling RDMA Performance Isolation
In this chapter, we introduce Harmonic, the final core component of this dissertation.

Building upon our understanding of RDMA microarchitecture and the insights gained

from Collie and Husky, Harmonic is designed as a hardware-assisted solution to mitigate

performance interference and ensure robust performance isolation in RDMA networks. We

primarily use the Husky test suite to evaluate Harmonic. We evaluate its effectiveness

based on whether Harmonic can successfully pass Husky’s tests and measure its efficiency

based on its performance overhead. Our evaluation results show that Harmonic is the first

microarchitecture-aware solution and, to the best of our knowledge, is the first solution that

can prevent all interference and anomalies uncovered by Husky. This work was completed

in collaboration with Jiaqi Lou1, Jinghan Huang, Wei Bai, Nam Sung Kim, Danyang Zhuo.

5.1 Introduction

The Remote Direct Memory Access (RDMA) technology has been widely deployed in

modern clouds to improve network performance. First-party workloads in clouds, such

as storage [12, 32], heavily rely on RDMA to achieve high throughput, low latency, and

high CPU efficiency. A natural next step for cloud providers is to bring RDMA’s benefits

to their public cloud tenants. Unfortunately, this has not yet come true because RDMA

was initially designed for high-performance computing, lacking adequate multi-tenancy

support.

One of the key missing components for bringing RDMA to public clouds is performance

isolation. Without proper performance isolation, a buggy or malicious tenant can affect the

RDMA performance of other tenants, and even conduct side-channel attacks through the

RDMA network [62, 118, 126, 124]. Although network performance isolation has been ex-

tensively studied in the past decades [13, 38, 53, 65, 121, 9, 37], recent work has highlighted

that prior RDMA performance isolation solutions are insufficient for public clouds [62]. An

1 Jiaqi and I contribute equally to this work and share co-first authorship. She focused on the hardware
design and implementation, and I focused on the software design and implementation.
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RDMA NIC (RNIC) has microarchitecture resources, such as on-NIC cache and on-NIC

processing units that significantly affect RDMA performance [62, 56, 58]. However, all

existing performance isolation solutions are agnostic to the contention of these microar-

chitecture resources among tenants, providing insufficient performance isolation when the

microarchitecture resources are exhausted. For example, RDMA traffic that keeps generat-

ing expensive ATOMIC requests can exhaust the on-NIC processing units and drastically

reduce the RDMA performance of other tenants [100, 62].

The goal of this paper is to explore the possibility of building a microarchitecture-

resource-aware solution for RDMA performance isolation. Our high-level approach is as

follows: we monitor the usage of RDMA resources (including microarchitecture resources)

per tenant, and then modulate it accordingly to provide isolation. Yet, realizing our

approach faces two challenges:

(C1) Accurately measuring per-tenant RNIC resource usage. RDMA traffic bypasses

the kernel, which makes it hard to intercept and monitor the RDMA traffic in system soft-

ware. Moreover, RNICs today only expose limited aggregate statistics, such as RNIC cache

miss rates and total PCIe bandwidth consumption, without the capability of identifying

the specific tenant causing this resource usage.

(C2) Finding an appropriate rate limit enforcement entry point. System software is not

a viable rate limit enforcement point because most RDMA operations bypass the control of

cloud providers. Commodity RNICs also do not provide rich rate enforcement features. For

example, no current RNIC provides a mechanism to limit a tenant’s rate of specific RDMA

operations (e.g., ATOMIC), and cloud providers cannot feasibly modify existing RNICs to

incorporate these new features. We also cannot simply drop excessive packets at the RNIC,

because packet losses can significantly degrade RDMA performance [64, 39, 144, 137].

Our key approaches to addressing the above challenges are outlined below. First,

we make a PCIe switch serve as a sweet spot for measuring the RDMA resource usage

of tenants at runtime. This choice is motivated by the following reasons. All RDMA

traffic goes through the PCIe bus, allowing us to intercept all RDMA behaviors. More
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importantly, RDMA pins all RDMA-related objects (e.g., payloads and other metadata)

in the host DRAM. Thus, the physical address to tenant/object mapping is fixed. This

enables us to correlate a PCIe transaction with a specific tenant and associated RDMA

behaviors by mapping the transaction’s target physical memory address to the RDMA

objects.

To tackle the second challenge, we repurpose the rate limiters in RNIC hardware for our

performance isolation. Modern commodity RNICs employ many rate limiters for congestion

control purposes. These rate limiters react to network congestion feedback and reduce

rates accordingly. We therefore can proactively inject an appropriate amount of congestion

feedback to targeted tenants, to limit their rates when we need to limit their RDMA

resource usage.

Applying our insights above, we develop Harmonic, the first hardware/software co-

design solution for RDMA performance isolation that takes RNIC microarchitecture re-

sources into account without requiring changes to applications. To measure the RDMA

resource usage of tenants at runtime, we implement an FPGA-based Programmable In-

telligent PCIe Switch (PIPS) in Harmonic. We extend existing RNIC kernel drivers to a

Harmonic kernel driver to obtain the aforementioned physical memory address to tenan-

t/object mappings. PIPS connects the RNIC to the host, and monitors the RDMA traffic

of each tenant using the mappings provided by the Harmonic kernel driver. We implement

a Harmonic daemon to repurpose the rate limiters in the RNIC hardware. Most, if not all,

commodity RNICs support DCQCN [144] as congestion control algorithm [101, 16, 51]. The

Harmonic daemon therefore can generate and send Congestion Notification Packet (CNP),

the congestion feedback in DCQCN, to rate-limit targeted tenants for our performance

isolation purpose. The Harmonic daemon limits tenants’ rates based on PIPS’s monitoring

results. To make performance isolation more practical for public RDMA clouds, we also

extend the existing RDMA performance abstraction to include a set of RDMA-specific

resources, such as the number of QPs and the RDMA request rate.

We use Harmonic to enhance an NVIDIA ConnectX-6 Dx 25 Gbps NIC and evaluate
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Harmonic with the state-of-the-art RDMA performance isolation test suite, Husky [62],

and a popular in-memory database application, Redis over RDMA [143]. We compare

Harmonic with other performance isolation solutions, including hardware Single Root I/O

Virtualization (SR-IOV), separate hardware queues, and Justitia [142]. Our evaluation

results show that Harmonic successfully provides stronger performance isolation under

various types of resource contention. This results in improving the throughput of Redis

by up to 1.4ˆ, compared to the state-of-the-art isolation solutions. To the best of our

knowledge, Harmonic is the first RDMA performance isolation solution that can pass the

Husky test suite [62].

Lastly, current Harmonic supports 25 Gbps RNICs, limited by the speed of the PCIe

physical layer (PCIe PHY) in our commodity FPGA development board2. A deployable

solution for high-speed RNIC will require adopting our proposed techniques in the future

RNIC design. While Harmonic serves as a prototype, it demonstrates the viability of

RDMA performance isolation for public clouds and can act as a benchmark for future

implementations. Our design presented in this paper is currently being integrated into one

leading technology enterprise’s next-generation RNIC design.

5.2 Background

5.2.1 Remote Direct Memory Access

RDMA enables user applications to directly interface with RNIC by offloading network

stack processing to RNIC hardware. RDMA enables low-latency, CPU-efficient networking

at high bandwidth, and it is increasingly deployed at datacenters [39, 12, 32]. For example,

Bai et al. [12] demonstrated that more than 70% of traffic in Azure is RDMA.

Figure 5.1 shows the four key components (i.e., userspace libraries, kernel drivers, RNIC

2 We find that the state-of-the-art FPGA whose PCIe PHY can be configured in PCIe switch upstream/-
downstream mode only has 8-lane edge connector after several rounds of communication with our FPGA
manufacturer, Xilinx. This is also confirmed by Xilinx’s public information [3, 2], but it can support any
RNICs with any speed offered by the PCIe PHY. We discuss the scalability of our solution to higher speed
in §5.7.
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firmware, and RNIC ASIC) in a modern commodity RDMA system from a top-down per-

spective. The first component that user applications interact with is userspace libraries.

Applications invoke APIs provided by these libraries to issue data verb and control verb op-

erations. For example, applications call control verbs to allocate necessary objects such as

queue pair (QP), completion queue (CQ), and memory region (MR). Applications thereby

issue data verbs to send RDMA network traffic, such as RDMA WRITE requests to di-

rectly write remote host’s memory. In a typical RDMA system, control verbs are first

processed by RDMA kernel drivers. Kernel drivers usually conduct a few checks (e.g., pa-

rameter validation) and construct a command to send to the RNICs. In the RNIC, a small

piece of software or microcode embedded into hardware device memory will process these

commands and return results to the kernel drivers, such as the newly created QP [103].

This software on the RNIC is known as the RNIC firmware. When the RNIC firmware

processes control verbs, RNIC ASIC is also involved since many hardware status may be

updated. For example, RNIC has on-NIC cache to store QP contexts [58], which can be

accessed and updated when the RNIC firmware handles QP creation or destruction.

Data verbs are directly passed to RNIC hardware without involving kernel drivers (or

any system software), which is known as kernel bypass. For example, when applications call

ibv post send to issue an RDMA SEND request, userspace libraries prepare work queue

entries (WQEs) in send/recv queues. Each entry in the queues corresponds to a data verb.

The libraries then notify the RNIC hardware that there is a WQE to process. Specifially,

the libraries may ring the doorbell of the corresponding QP (i.e., write a specific register)

on the RNIC, triggering RNIC hardware to DMA read those WQEs from the host and

start to process. When processing data verbs, RNIC firmware may also be involved under

some scenarios, such as handling an error triggered by a data verb.

There are three types of resources in RNICs:

(R1) Traditional network resources. They include network bandwidth and packet pro-

cessing capacity, indicated by bits per second (BPS) and packets per second (PPS), respec-

tively.
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Figure 5.1: RDMA workflow.

(R2) RDMA-specific architectural resources. They comprise the number of QPs and

request rates of different verbs (e.g., ATOMIC, WRITE, and SEND) that applications can

directly operate on.

(R3) RDMA-specific microarchitecture resources. They encompass the PCIe band-

width, on-NIC cache and on-NIC processing units that are vendor-specific. These resources

are not exposed to applications and can be neither monitored nor controlled precisely [64].

5.2.2 RDMA Performance Isolation

RDMA has already been successfully adopted in accelerating first-party workloads such as

storage [12, 32]. The next question is whether these RDMA advantages can be extended

to third-party workloads in the public cloud. RDMA performance isolation for public

clouds is important, as customers primarily choose RDMA for workloads with demanding

performance requirements. Without proper performance isolation, a faulty or malicious

tenant could detrimentally impact the performance of other tenants [62].

To design a performance isolation solution, one key question is: what’s the abstraction

of network performance? The conventional wisdom is that a cloud provider should guar-

antee network bandwidth, measured by BPS, to a virtual machine (VM) or container. For

example, Amazon Web Service (AWS) provides a 30 Gbps guarantee for its m7gd.16xlarge

instance and Azure offers a 40 Gbps guarantee for its D96as v5 VM series [6, 85]. This is

done by limiting the available network bandwidth to the remaining VMs co-located on the

same host.
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In this paper, we argue that this conventional wisdom does not work for an RDMA net-

work. The aforementioned microarchitecture resources make RDMA performance isolation

different from that on traditional TCP/IP networks. In RDMA, most verb processing tasks

are offloaded to the RNIC firmware and RNIC hardware. RNICs leverage their internal

resources to support these offloaded functionalities. Not considering these resources results

in performance isolation designs that are insufficient to be used in public clouds. One of

the empirical evidences is that Husky [62], a prior work, has already shown that no mature

RDMA performance isolation solution exists. Therefore, a comprehensive RDMA perfor-

mance isolation solution for the public cloud has to consider various types of interference

on RNIC’s microarchitecture resources, which can occur when multiple tenants contend

for access to these resources.

Static partitioning versus dynamic resource usage modulation. In general, there are two

approaches to achieving performance isolation when sharing resources. Our paper explores

the dynamic resource usage modulation approach, which is to monitor and control each

tenant’s resource usage. The other approach is to statically partition every resource and

assign partitioned resources to each tenant. We did not explore the static partitioning

approach for two reasons. First, RNIC microarchitecture resources (e.g., NIC caches)

are crucial for applications’ performance. We have observed many prior works in RDMA

application design to use these resources efficiently in order to avoid resource exhaustion [56,

58, 64, 19]. Static partitioning of these resources may cause catastrophic performance

penalties for RDMA applications. Second, commodity RNICs currently do not support

static resource partitioning, and exploring this approach thus requires building an RNIC

from scratch, which is beyond the scope of our research. Our goal is to design a prototype

that shows feasibility for deployment, and we thus choose to build our system around

commodity RNICs.
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5.2.3 Design Space for Monitoring and Controlling Tenant RDMA Re-

souce Usage

Two key questions arise for monitoring and controlling tenants’ RDMA resource usage: (1)

where should the cloud provider monitor per-tenant resource usage, and (2) where should

the provider enforce resource usage?

The answers to these two questions depend on the deployment model of RDMA, i.e.,

how RDMA is virtualized. Figure 5.2 shows the ownership (i.e., owned by tenants or cloud

providers) of RDMA system components in typical RDMA virtualization schemes. In the

bare-metal scenario, tenants own the entire physical host, including userspace libraries and

RDMA kernel drivers. They can even modify and upgrade RNIC firmware as needed [102].

Cloud providers have limited observability and control over both data and control verbs in

this scenario. However, RNIC isolation is not a pressing concern as one tenant exclusively

occupies the entire machine.

In containerized clouds, each tenant owns a container, and the host OS manages all

containers. In this setup, a tenant owns its container instance, including userspace libraries.

The tenant’s data verbs therefore fully bypass the cloud provider’s control. However,

drivers and hardware components are still controlled by the cloud provider, allowing them

to implement management features. For instance, cloud providers can monitor and regulate

RDMA control verbs by incorporating the necessary logic into kernel drivers.

In guest virtual machine (VM) clouds, each tenant owns a VM, running on top of the

hypervisor. There are several approaches to exposing an RNIC to guest VM. A widely

adopted approach is to use Single Root Input/Output Virtualization (SR-IOV). With SR-
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IOV, multiple virtual instances of the RNIC, referred as Virtual Functions (VFs), are

allocated on a physical RNIC. These VFs can be attached to VMs, allowing applications

within the VM to directly interact with and utilize the RNIC. The control verbs and data

verbs generated by guest VM applications bypass the hypervisor completely. HyV [110]

and MasQ [42] employ hybrid virtualization techniques to expose RDMA to guest VMs.

They introduce backend drivers within the hypervisor, requiring guest VM drivers to com-

municate with these backend drivers for processing tenants’ control verbs. The hypervisor

operates control verbs on the RNICs on behalf of these tenants. Meanwhile, tenants within

the guest VMs have the capability to directly transmit data verbs to the RNIC, bypassing

the guest kernel and the hypervisor. This ensures native RDMA performance for tenant

applications. In these guest VM scenarios, cloud providers typically retain ownership of

the hardware components, while the ownership of kernel drivers may vary depending on

the specific scheme being employed.

Another virtualization scheme adopts a microkernel-like approach. It forces all tenants

to talk to a privileged daemon to use RDMA, such as Freeflow [60] and mRPC [18]. In this

scenario, tenants send both control verbs and data verbs to this privileged daemon. The

daemon, in turn, initiates the actual RDMA APIs to execute these verbs and subsequently

provides the results back to the tenants. This design grants cloud providers comprehensive

control over all aspects but comes with the trade-off of additional performance overhead.

Existing solutions’ observability and enforcement entry point. To summarize, except for

bare-metal environment and virtualization only using SR-IOV, control verbs can be moni-

tored and controlled by cloud providers in kernel drivers, hypervisor backend or privileged

daemon. However, data verbs cannot be easily observed or regulated. In containerized

cloud (2) or guest VM (3) scenarios, data verbs completely bypass cloud provider’s con-

trol. Justitia [142], an RDMA performance isolation solution, requires tenants to use its

customized userspace libraries. However, a malicious tenant can easily bypass or alter the

libraries, circumventing the intended isolation. For the microkernel approach, even if we

add performance isolation features into a microkernel service, it is still challenging to accu-
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rately monitor and regulate data verbs, especially for one-sided operations. For example,

RDMA one-sided operations (e.g., WRITE and READ) completely bypass the responder’s

CPU and therefore cannot be intercepted by the privileged daemon easily.

5.3 Harmonic Overview

We develop Harmonic, the first RDMA performance isolation solution for public clouds that

considers RDMA microarchitecture resources. Our design incorporates three key ideas.

We first introduce an RDMA-specific performance abstraction tailored for public clouds.

Currently, cloud providers provide tenants with network abstractions based on BPS or PPS.

Unfortunately, such metrics fall short of capturing the varied sets of resources RDMA

operations use. RDMA supports various verbs as its primitives, and these verbs demand

distinct resource usage. For example, let’s consider an 8-byte RDMA ATOMIC compare-

and-swap (CAS) request and an 8-byte RDMA SEND request. Both generate identical

network traffic in terms of bits and packets, yet the ATOMIC request consumes more

NIC processing cycles [58, 62], thus incurring a higher cost. Our performance abstraction

considers the RDMA-specific architectural resource capacities allocated to each tenant,

such as the number of QPs, CQs, MRs, and the total MR size. It is worthwhile to note

that our abstraction does not include RDMA-specific microarchitecture resources, because

these resources are vendor-specific and cannot be directly controlled by tenants.

The second pillar of our design ideas is to perform runtime hardware-based measure-

ments of per-tenant RDMA resource consumption. Since RDMA data verbs bypass the

kernel, resource measurement requires direct hardware involvement. In RDMA networks,

a tenant’s resource consumption is tightly coupled with its verb behaviors. Therefore, by

intercepting and analyzing these verbs, we can gain precise insights into the resource con-

sumption of that particular tenant. However, we cannot directly observe verb behaviors on

the inter-host network, i.e., Ethernet (for standard RoCEv2 deployment). This limitation

arises because many RNIC resource usage behaviors would be opaque if we only monitor
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packets sent and received by the RNIC. For instance, the RNIC initiates PCIe transactions

to retrieve entries from DRAM when its cache entries are exhausted. This RNIC activity

incurs both cache miss and extra consumption of PCIe bandwidth—a crucial microarchi-

tectural resource—but remains undetected on the Ethernet. We argue that we need to

observe this within the host. We find PCIe switch as a sweet spot to enable this runtime

measurement feature for two reasons. First, all RDMA traffic goes through PCIe bus,

allowing us to capture all tenants’ verb behaviors including the host memory address to be

accessed in the PCIe Transaction Layer Packet (TLP) header. Second, RDMA requires all

RDMA-related objects (e.g., payloads, QPs, CQs) to be pinned in the host DRAM. This

indicates the physical address to objects/tenants mapping is fixed and we can monitor

tenant’s verb behaviors by monitoring which addresses are accessed. Therefore, we can

simply parse the TLP header to extract the address field and match it with the mapping,

without looking into the large volume of PCIe TLP payloads. There is no existing PCIe

switch supporting this functionality. We therefore build an FPGA-based Programmable

Intelligent PCIe Switch to prototype this runtime measurement feature. The analogy of

this PCIe switch is a programmable switch (e.g., P4-based Tofino switch) in the tradi-

tional computer network. The difference is that we design the switch to run on PCIe bus

instead of Ethernet. Observing verb behaviors directly allows us to not only measure the

network resource consumption (e.g., BPS) but also gauge the utilization of RDMA-specific

microarchitecture resources, including PCIe and RNIC processing capacities.

Our third idea is to repurpose the RNIC’s congestion control mechanism to facilitate

RDMA-friendly rate limiting. Given the kernel and CPU bypass characteristics of RDMA,

traditional software-based rate limiters are off the table due to the CPU overheads and

the additional latency. Software-based rate limiters are also ineffective in limiting the data

receiver side when one-sided operations are used. Moreover, RDMA deployment stems

from a lossless network, and current RNICs cannot consistently ensure optimal retransmis-

sion performance across all scenarios [64, 144, 39]. Therefore, simply discarding excessive

RDMA packets in hardware [28] can cause RDMA performance degradation and is not an
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option. Our key observation is that we already have a native hardware rate limiting mech-

anism implemented in modern commodity RNICs for congestion control purposes (i.e.,

DCQCN [144]). These rate limiters react to network congestion feedback, known as con-

gestion notification packets (CNPs) in DCQCN, to reduce the rate of RDMA connections.

We can re-purpose these rate limiters for performance isolation purpose by proactively gen-

erating and sending CNPs to modulate the RDMA resource usage per tenant. While this

method does consume some processing cycles (CPU cycles in our prototype), the overheads

are considerably reduced compared to software-based rate limiters (§5.6.5).

Harmonic’s deployment model and workflow. Harmonic assumes that the cloud provider

owns the RDMA kernel drivers to intercept control verbs. This is standard for containerized

RDMA clouds, para-virtualized VM clouds and microkernel virtualization clouds. We

didn’t consider the RDMA virtualization scheme that solely depends on SR-IOV, and we

show SR-IOV itself is not enough to provide performance isolation (§5.6.3). In summary,

Harmonic can handle the (2), (3) and (4) scenarios in Figure 5.2. We do not consider the

virtualization scenario (1) because RNIC isolation is unnecessary on the bare-metal setting.

We implement our prototype with a temporary focus on scenario (2), but it should be easily

generalized to both (3) and (4) because we only rely on the modification to the RDMA

kernel drivers without touching other system software components.

Figure 5.3 presents the system architecture of Harmonic. Harmonic has two main

components: the Harmonic daemon and the Programmable Intelligent PCIe Switch (PIPS)
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with Harmonic kernel driver. Harmonic kernel driver is a modified version of the standard

RDMA kernel driver that keeps track of control verbs issued per tenant and (1) generates

the address-to-tenant/object mappings to PIPS. PIPS not only forwards RDMA traffic

as a regular PCIe switch, but intercepts PCIe traffic to keep track of data verbs issued

per tenant as well. Harmonic daemon is a privileged process that runs on the host OS or

hypervisor. It (2) polls tenant’s data verb behavior statistics from the PIPS and (3) sends

congestion feedback packets to each tenant to modulate their RDMA resource usage. All

these components are trusted and will not be tempered by the tenants.

Harmonic’s benefits. Harmonic has several key benefits compared to existing RDMA

performance isolation solutions. First and most important, Harmonic takes microarchitec-

ture resource usage into account and thus provides stronger isolation. Harmonic observes

both data and control verbs, in the meantime, restricts tenant resource usage correspond-

ingly. This is different from simply observing network bandwidth usage. Second, Harmonic

requires no modification of applications. There’s no need to adjust application libraries,

allowing for straightforward integration with application binaries. Third, our approach de-

livers native RDMA performance for public cloud usage. Applications’ data verbs continue

to bypass system software entirely, and the only latency overhead comes from the PCIe

switch, which is minimal (§5.6.5).

Harmonic’s performance abstraction. Our performance abstraction includes a set of

metrics that enable tenants to accurately describe their expected RDMA network perfor-

mance needs. At the same time, it allows us to design the performance isolation mecha-

nisms to guarantee the metrics to tenants. In addition to the conventional BPS metric,

our performance abstraction considers per-tenant RDMA-specific resources, including the

number of QPs, CQs, MRs, and the total MR size. Application developers have direct

control over these RDMA-specific architectural resources, because they directly interface

these resources in the application source code. The resources in our abstraction are also

vendor-agnostic: they are specified as part of the verb library [34], which work across differ-

ent vendors’ RNICs. It is important to note that our performance abstraction intentionally
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Table 5.1: An example for RDMA performance abstraction.

Name # of QPs # of WQEs # of MRs # of CQs # of CQEs MR Size BPS DRPS CRPS Prio

Alice 128 16384 128 16 8192 2 GB 10 Gbps 30 Mrps 1 Krps 0

excludes explicit consideration of RNIC microarchitecture resources, such as on-NIC cache

and NIC processing units. These components are vendor-specific and generally opaque to

RDMA developers.

Moreover, our performance abstraction includes the typical resources other performance

isolation solutions use, such as Request Per Second (RPS). We categorize RPS into data

verbs RPS (DRPS) and control verbs RPS (CRPS) as they serve different purposes. While a

more granular categorization of DRPS into sub-types such as ATOMIC RPS or SEND RPS

is conceivable, we have chosen to opt for a normalized RPS, balancing precision with user-

friendliness. The analogy is that CPU vendors use cycles instead of instructions per second

as the performance metric because instructions can have variable lengths. To illustrate,

Table 5.1 presents an example detailing the guaranteed metrics for a tenant within this

framework. Let us assume one ATOMIC request consumes the resources equivalent to 3

SEND requests. Alice, with 30M DRPS, therefore can achieve up to either 10M ATOMIC

requests per second or 30M SEND requests per second. It should be noted that DRPS and

BPS guarantees are offered in a mutually exclusive ”OR” fashion. For instance, a tenant

consistently posting SEND requests with large message sizes will encounter BPS throttling

before reaching the DRPS limit. Next, we present the design and implementation details

of Harmonic that uses the above performance abstraction to provide RDMA performance

isolation.

5.4 Programmable Intelligent PCIe Switch

To monitor tenant’s verbs behavior through PCIe, we develop a Programmable Intelligent

PCIe Switch (PIPS) that can forward PCIe Transaction Layer Packets (TLPs) at line

rate and perform real-time RDMA-centric inspections. Given address-to-object/tenant

mappings captured in kernel driver, we extract the physical address of the host memory
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Fmt Type Payload Size
Last & First

DW BE
Address[63:32]

Byte 0

Byte 4

Byte 8

Byte 12 Address[31:2]

7-015-823-1631-24

Figure 5.4: TLP header format where the gray blocks represent unused fields for PIPS.
DW BE denotes dword byte enable.
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Figure 5.5: Programmable Intelligent PCIe Switch (PIPS) internal architecture. The
dash line indicates asynchronous TLP analysis, decoupled with PCIe switch forwarding
path.

from the RNIC-issued DMA read/write TLP header (Address field in Figure 5.4) and utilize

it to identify both the object and the tenant associated with this TLP. This capability

enables us to accurately measure per-tenant RDMA resource utilization.

We build PIPS using AMD/Xilinx Versal VCK190 Evaluation FPGA board with 4K

lines of RTL Verilog code and various AMD/Xilinx IPs (Intellectual Property Core). PIPS

has five Modules (Figure 5.5): (M1) kernel driver, (M2) PCIe switch, (M3) host-PIPS

communication interface, (M4) mapping manager, and (M5) TLP analyzer. The kernel

driver maintains latest address-to-object/tenant mappings. The PCIe switch routes TLPs

to their corresponding destinations. Host-PIPS communication interface and mapping
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manager handle the synchronization of address-to-object/tenant mappings between host

and PIPS while collecting RDMA traffic statistics. The TLP analyzer inspects the TLP

headers of RNIC-initiated DMA read/write requests and matches them with the address-

to-object/tenant mappings.

5.4.1 PCIe Configuration and Routing Logic

The PCIe switch (M2) is the key component of Harmonic. It consists of routing logic and

two instances of Xilinx Versal ACAP Integrated Block for PCI Express IPs [7]. The PCIe

PHYs in the two instances are configured as PCIe switch’s upstream port and downstream

port, respectively. Figure 5.5 demonstrates Harmonic architecture: the upstream port is

directly connected to the host using the PCIe edge connecter of FPGA, and the down-

stream port leverages the FMC+ expansion connector with a PCIe Root FMC+ plug-in

module [45] to be connected to RNIC.

5.4.2 Address-to-Object/Tenant Mappings

Maintaining real-time address-to-object/tenant mappings in PIPS is essential for precisely

monitoring RDMA resource usage per tenant. These mappings can change when appli-

cations create, delete, or modify objects. The change of the mappings is triggered by

control verbs posted by RDMA applications, which are processed by the kernel driver

(M1). Therefore, we modify a legacy NVIDIA RNIC kernel driver (e.g., mlx5 ib.ko and

ib uverbs.ko) to track address-to-object/tenant mappings. We use container’s process ID

as tenant ID. When a tenant calls a control verb, the Harmonic kernel driver first traverses

the process tree in the kernel to find the tenant ID. It then records a mapping entry for

this control verb behavior, including tenant ID, the type (e.g., QP creation), the size and

start physical address of the object. The RNIC kernel has already translated the virtual

addresses for these RDMA objects to physical addresses for its DMA purpose, and we can

directly use these translated physical addresses to populate our mapping entries. For appli-

cation payloads, we also record the payload registered flags (e.g., ATOMIC enabled). This
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information helps us determine the type of payload regions accessed by tenants in PIPS.

The kernel driver is responsible for updating address-to-object/tenant mappings on PIPS

by embedding an operation code in mapping entry to signal insert or delete operations to

PIPS. We show detailed format and contents of both address-to-object/tenant mapping

and statistics entry in §5.11.

5.4.3 Mapping Synchronization and Management

We obtain address-to-object/tenant mappings from the kernel driver and then utilize the

host-PIPS communication interface (M3) and the mapping manager (M4) to continuously

update and manage the most up-to-date mappings in PIPS. This is crucial for later use by

the TLP analyzer.

The host-PIPS communication interface receives and parses the MMIO write requests

from host to update address-to-object/tenant mappings in the PIPS mapping manager

( 1 , 2 ). Out of performance (i.e., achieving real-time monitoring) and implementation

complexity considerations, the mapping manager employs a hashing-based mechanism and

maintains a hierarchical mapping storage system, consisting of a first-level (L1) direct-

map scheme and a second-level (L2) linked-list slot pool. The mapping manager utilizes

a double-hash strategy and leverages two distinct hash functions for calculating the hash

values of the address field as the indexes to L1 and L2, respectively. Note that L2 is only

used when collision happens in L1. In this case, each mapping entry in L1 is treated as the

head of a linked list, with the remaining entries being stored in L2 linked-list slot pool. In

addition to mapping management, the host-PIPS communication interface also generates

completion TLPs with associated statistics as payload, when the host polls RDMA traffic

statistics through MMIO read requests ( 3 ).

5.4.4 Efficient TLP Analyzer

The TLP analyzer (M5) is responsible for extracting the target physical address in TLP

headers from RNIC-issued DMA read/write requests ( 1 ). When a TLP arrives at PIPS,
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it duplicates the TLP and sends one copy to the TLP analyzer for analysis, while simul-

taneously forwarding the original TLP to its destination. In addition, the TLP analyzer

implements an efficient search engine to collaborate with the mapping manager, which can

perform search operation ( 2 ) in parallel with insert and delete operations, taking the

hash value of physical address in TLP header as search key. Since the hash collision rate is

low, the average search time is only 7 cycles including the latency for interconnection and

updating statistics.Upon a mapping search hit, the TLP analyzer computes the statistics

entry offset based on TID, flags, and type found in retrieved mapping entry, along with

the direction of current TLP (i.e., RNIC DMA read/write Host). Then it updates the

statistics entry at this determined offset ( 3 ). With this approach, PIPS maintains an

accurate record of both the access count and the volume of bytes accessed for each object

and tenant, while simultaneously identifying the type and flag associated with the accessed

memory.

5.5 RDMA-friendly Rate Limiting

Harmonic daemon is responsible for modulating per tenant’s resource usage. It achieves

this by employing two distinct rate limiting techniques for data verbs and control verbs.

5.5.1 Data Verbs Rate Limiting in Harmonic Daemon

The Harmonic daemon takes the proactive approach of creating and injecting Congestion

Notification Packets (CNPs) to control tenants’ rate. Because commodity RNICs automati-

cally generate CNPs within the ASIC without providing an interface to users, the Harmonic

daemon forges CNPs and sends them to the data sender side of tenants. Forging CNP needs

the source and destination IP addresses as well as the remote QP number (QPN). Harmonic

daemon obtains this information during the setup of connections. When tenants create or

modify QPs, these control verbs are intercepted by Harmonic kernel driver. Subsequently,

Harmonic kernel driver sends an event to notify Harmonic daemon that a new connection

is set up, including both IP addresses and the QPN.
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Harmonic daemon decides which tenant should be paced and at what specific rate.

Harmonic daemon first keeps polling statistics collected by the PCIe switch through MMIO

reads. These statistics include BPS and RPS of various types of RNIC-initiated DMA

requests, such as fetching WQEs, fetching QP context, and writing payload into host

memory. Then, Harmonic daemon calculates per tenant NIC BPS, PCIe BPS, DRPS

consumption, as well as cache miss frequency based on the collected statistics. It sums up

tenant’s DMA accesses to various types of payloads (e.g., WRITE) to calculate NIC BPS

and DRPS, and sums up tenant’s DMA accesses to various types of RDMA metadata (e.g.,

QP contexts) to calculate cache miss frequency. For DRPS, we normalize different types of

RDMA requests into the same unit, based on an estimated cost ratio for various types of

data verbs. We conduct an offline profiling to estimate this cost ratio by running a set of

micro-benchmarks. We run perftest [108] to send requests of minimal sizes in a batch to

measure the maximum rate of different data verbs, and the 1/rate is the cost. In practice,

we normalized WRITE and SEND operations to 1 unit, READ to 1.1 unit and ATOMIC

to 3 units. Given the accurate resource usage per tenant, Harmonic daemon next compares

each tenant’s current usage and its allocation. Harmonic daemon directly uses NIC BPS

and DRPS from tenant’s profile (e.g., Table 5.1), and calculates tenant’s PCIe allocation

using dominant resource fairness model [33]. Harmonic daemon analyzes guarantee profiles

of all tenants on the same host and identifies the dominant resource among them. Then

Harmonic daemon distributes the PCIe bandwidth based on the allocation of this dominant

resource. For example, given a network capacity as 25 Gbps bandwidth and 30M DRPS,

let us assume tenant A needs 15 Gbps bandwidth and 10M DRPS and tenant B needs

5 Gbps and 15M DRPS. The dominant resource therefore is bandwidth for tenant A (23)

and DRPS for tenant B (12). We next allocate the available PCIe bandwidth to tenants A

and B following the proportion of 4:3 (i.e., 2
3{

1
2).

When a tenant uses more BPS/DRPS/PCIe bandwidth than its allocation, we send

CNPs to data sender ends of this tenant’s connections. Harmonic daemon currently applies

a simple strategy to compute the CNP rate. Harmonic sends 1-4 CNPs in a batch after
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Ti intervals (in microseconds) to manage tenants’ rate. Equation 5.1 shows how interval

is updated based on the measured rate and target rate. We use two heuristic parameters

Tmin and Tbasic in practice. Tmin is a minimal interval threshold to avoid excessively

frequent adjustments, which could lead to unstable rate or even cause performance anomaly.

Tbasic serves as a multiplier, reflecting the intrinsic response sensitivity to resource overuse.

Tuning these values can adjust the strictness of policy, as a small Tbasic punishes tenants

that overuse resources more strictly.

Ti “ maxpTmin, Tbasic ˚ p1.0´
Rcurrent ´Rtarget

Rtarget
qq (5.1)

We specially handle on-NIC cache resources due to their unique characteristics. While

we can measure tenant’s cache miss statistics by tracking the number of PCIe access to

those metadata (e.g., QP context), we do not set a cache miss threshold for each tenant.

This decision is because a higher cache miss rate in one tenant does not necessarily indicate

an excessive use of cache resources. Instead, we monitor overall RNIC cache contention

and slow down tenants accordingly. When Harmonic daemon observes severe cache misses,

Harmonic starts to slow down tenants with the lowest priority. For tenants with the same

priority, we slow down them using the dominant resource fairness policy mentioned above.

We acknowledge that there are alternative policies, such as monitoring a tenant’s active

QPs/MRs as the basis for rate-limiting decisions. However, we find that our straightforward

policy is already effective in providing isolation when cache contention arises.

5.5.2 Control Verb Rate Limiting in Harmonic Drivers

Control verbs rate limiter first needs to limit the capacity of control verbs (akin to in-flight

packets) for each tenant, including the maximum number of QPs and MRs allowed per

tenant. We record tenants’ control verbs guarantee profiles as a linked list in Harmonic

kernel driver. When a new tenant is created, we invoke Harmonic kernel driver to register

a new control profile and insert it to the linked list. Whenever this tenant calls a control
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Figure 5.6: Measurement and control of RDMA traffic. App denotes the performance
metrics as reported by perftest.

verb, Harmonic driver checks its current resource usage and the profile, determining if this

control verb should be rejected or not.

We also need to limit the rate for control verbs to prevent tenants from excessively

updating hardware status. Frequent updates have the potential to induce RNIC cache

thrashing, as discussed in prior work[62]. We record timestamps for each tenant in our

defined structure when they issue control verbs. When a tenant calls a control verb, we

compare the current timestamp and the previously recorded timestamps. If the tenant

is making control verb calls at a rate that exceeds their allocated rate, we introduce a

sleep delay. We choose to slow down tenants through sleep instead of returning an explicit

error. This way, Harmonic remains transparent to tenants. If we directly return errors to

applications, it would necessitate error code checks and retries in applications.

5.6 Evaluation

5.6.1 Testbed Setup

There are two servers in our testbed, each equipped with one NVIDIA ConnectX-6 Dx (CX-

6) 25 Gbps RNIC. Our FPGA-based programmable PCIe switch supports up to PCIe Gen

4 with 8 lanes with up to 128 Gbps PCIe bandwidth. Nevertheless, there are no NVIDIA

100 Gbps RNICs that support PCIe Gen 4 with 8 lanes. We therefore use Harmonic to

enhance our CX-6 25 Gbps RNIC. RNICs of two hosts are directly connected without a

network switch. The BPS capacity of our RDMA endhost is 25 Gbps. We use the standard
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RDMA benchmark tool, perftest [108], to measure the DRPS capacity, and the result is

„30 M DRPS.

Both servers are running Ubuntu 20.04. Harmonic kernel driver is built upon MLNX OFED-

5.8.1.1.2.1 [103], with a total of 658 lines of C code modifications. Harmonic daemon is

implemented in C/C++ with a total of 2537 lines of code.

5.6.2 Measurement and Control of RDMA Resources

We first use microbenchmarks to demonstrate that Harmonic can accurately measure ten-

ants’ verbs behaviors and limit their resource usage. We let a tenant run different data

verbs workload from perftest in three time periods. It generates WRITE traffic, ATOMIC

traffic, and READ traffic, each for 5 seconds. We record the DRPS measured by the

perftest per second and compare it with the request rate measured by PIPS. As shown

in Figure 5.6a, PIPS successfully identifies the types of data verbs and measures the re-

quest rates of each workload accurately. Figure 5.6b shows that Harmonic also accurately

measures tenants’ behaviors across different request rates.

Next, we evaluate our CNP-based RDMA-friendly rate limiter. We use perftest to

generate workloads that extensively consume BPS and DRPS resources. We let Harmonic

to set different capacity for these two resources. We measure the achieved BPS/DRPS and

compare them with the capacity. Figure 5.6c and Figure 5.6d show that our rate limiter

can accurately control a tenant’s BPS and DRPS. It is worthwhile to note that we observe

that Harmonic daemon can react to resource overuse within one millisecond. As discussed

in Equation 5.1, a stricter Tbasic or Tmin leads to fast reaction (i.e., a few hundreds of

microseconds) while it may also hurt overall performance. In practice, we set Tbasic to 500

us and Tmin to 200 us, which we find already sufficient to enforce isolation.

5.6.3 Harmonic End-to-end Evaluation

We use the state-of-the-art RDMA performance isolation test suite, Husky [62], to perform

end-to-end evaluation of Harmonic. Husky includes a set of victim traffic patterns that are
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sensitive to different types of resource contention, and four sets of attacker traffic patterns

that exhaust four types of resources: RNIC BPS, RNIC processing capacity, RNIC cache,

and RNIC PCIe bandwidth. We observe that the reliable connection retransmission attack

described in Husky (Section 3.3) that exhausts RNIC processing capacity has already

been fixed in the latest NIC firmware, and the RNIC control verbs cache attack only

has a negligible effect on 25 Gbps RNIC. Harmonic passes all other Husky’s tests with

a tolerance level α “ 20%, indicating a tenant’s traffic will be no less than 80% of its

guarantee in the worst case, which is substantially better than all existing solutions. For

most tests, Harmonic effectively safeguards tenants to achieve their guarantees (i.e., less

than 5% difference). We next use a set of typical workloads from Husky as the case study

to demonstrate why existing solutions fail and how Harmonic satisfies tenants’ guarantee.

For each case study, we also compare our results with three baselines: (1) SR-IOV, which

allocates individual virtual function (VF) for each tenant to use [84]; (2) Separate hardware

traffic class (HW TC), which is supported by modern RNICs to dedicate a RNIC traffic

class to specific tenant for quality-of-service (QoS) control and performance isolation [82];

(3) Justitia, a recent software-based isolation solution for RDMA networks [142]. Note

that Justitia requires tenants to use specific userspace libraries, so a malicious tenant can

circumvent Justitia’s control by not using these Justitia’s libraries. However, we still want

to evaluate Justitia’s isolation mechanism (which includes its rate limiter design).

We allocate two tenants, named Alpha and Beta, on the same pair of hosts. Our RDMA

hosts support up to 25 Gbps and „30 M DRPS. We thus set our isolation goal to be that

both Alpha and Beta are guaranteed with 12.5 Gbps and 15 M DRPS. For each attack, we

let Alpha run a Husky victim traffic that is sensitive to a specific type of resource, and we

let Beta run an attacker traffic targeting the specified resource. Results are shown in 5.7a

to 5.7d. No Interference means running Alpha or Beta alone with no isolation enabled, and

No Protection means Alpha and Beta are running together without any isolation. For a

fair comparison, we configure SR-IOV and HW TC to assign one virtual function or traffic

class to each tenant, respectively. Justitia currently only supports fair share and does not
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provide any QoS guarantee. SR-IOV and HW TC only support RNIC bandwidth (i.e.,

BPS) guarantee. We therefore configure each virtual function with 12.5 Gbps for SR-IOV.

HW TC currently does not support floating-point rate configuration, and we thus configure

both tenants with 12 Gbps guarantee and reserve 1 Gbps for potential traffic burst. For

each figure, we use a dashed red line to denote the guarantee, a gray dashed line to denote

the tolerance bar (10 Gbps and 12 Mrps). We use a blue dash line in 5.7b to show the

victim performance since it is originally smaller than the guarantee and should not be

affected.

RNIC BPS contention. We first conduct BPS contention experiment. Alpha sets up a

single connection and keeps sending 64KB WRITE verbs, and Beta sets up 16 connections

and keeps sending 4KB WRITE verbs in a batch. Both Alpha and Beta consume almost

all the RNIC BPS when running alone. When running together without isolation, Beta

occupies more BPS since it has more connections. When isolation is enabled, we observe

that all existing solutions and Harmonic successfully satisfy all tenant’s guarantees. This

shows that RNIC BPS is accurately monitored and controlled by all the existing solutions

and Harmonic.

Processing capacity contention. We let Alpha run a throughput-sensitive Husky victim,

which uses 36 connections and keeps issuing 64-byte messages. Beta uses 64 connections

to keep generating expensive 8-byte ATOMIC traffic to exhaust RNIC processing capacity.

We normalize DRPS based on our profiling results, which show that a single ATOMIC

operation costs roughly three times as WRITE operations. 5.7b shows the DRPS for

Alpha and Beta. Note that Alpha does not use all its traffic demand, so the isolation

goal is that Alpha’s performance should not be affected when Beta joins (shown as the

blue dashed line). When no isolation is enabled, Beta’s ATOMIC workloads exhaust the

RNIC processing capacity and cause Alpha’s performance to drop by 38%. HW TC does

not react to this attack effectively because Beta only consumes a small amount of BPS

(i.e., 6.7 Gbps), which is substantially lower than the rate limit. Beta’s rate therefore is

not paced by HW TC, and Beta exhausts the RNIC processing capacity. When SR-IOV
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Figure 5.7: Contention in various components of the system, including NIC bandwidth,
processing capacity, RNIC cache, and PCIe bandwidth.

is enabled, Beta’s rate is not reduced as well, and we observe Alpha’s rate drops. Since

SR-IOV implementation details are not publicly available, our best guess is that this work-

load may cause some scheduler issues in SR-IOV implementation. Even though Justitia

considers processing capacity in its design, it is agnostic to the type of verbs and thus per-

forms even worse. It does reduce Beta’s ATOMIC traffic, but Alpha’s performance is even

more severely degraded. This is because Justitia treats these verbs equivalently without

accounting for the actual resource consumption of expensive ATOMIC verbs. Our observa-

tion of existing solutions is aligned with Husky’s results. Harmonic carefully considers the

expensive costs of ATOMIC requests and limits Beta’s rate accordingly, reserving adequate

processing capacities to achieve Alpha’s guarantee while satisfying Beta’s requirement.

RNIC cache contention. We let Alpha run a Husky victim that is sensitive to on-NIC

cache contention, which keeps generating 8-byte WRITE requests in batches across 512

different memory regions. Beta runs a Husky attacker that uses 4 connections to repeatedly
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issue single 512-byte WRITE request to 16K different memory regions to exhaust the on-

NIC cache resources. 5.7c shows that when cache contention occurs, the available RNIC

BPS is less than 25 Gbps. Even though both SR-IOV and HW TC reduce Beta’s BPS

consumption to less than 12 Gbps, Alpha’s performance is only improved by a minimal

extent. We suspect that under severe cache contention, the effectiveness of SR-IOV and

HW TC is also affected. For example, the severe cache miss may also slow down the

SR-IOV and HW TC scheduling process. Though the current design of Justitia is cache

agnostic, it successfully satisfies Alpha’s guarantee while leading to a drastic drop in Beta’s

performance, making it not satisfy the guarantee even with a 20% tolerance level. This is

probably because Justitia identifies both applications as throughput-sensitive applications

and schedules them equivalently, while Alpha issues smaller messages in batch and therefore

occupies more Justitia’s tokens. Harmonic detects the cache contention and measures the

available BPS. It then allocates the reduced available BPS to Alpha and Beta fairly. This

makes both Alpha and Beta achieve the guarantee within the tolerance level. Note that

the strict guarantee is impractical in this case because the bottleneck is the RNIC cache.

PCIe contention. Though our testbed supports up to „ 64 Gbps PCIe bandwidth. We

configure our FPGA-based PCIe switch to only support 32 Gbps PCIe bandwidth for our

25 Gbps RNIC. This PCIe BW
RNIC BW “ 32

25 ratio emulates scenarios for higher speed RNICs (e.g.,

128
100 and 256

200), where PCIe bandwidth can be one of the bottlenecked microarchitecture

resources. We let Alpha run the same application as in the Cache contention case. We let

Beta run the PCIe attack in Husky, which keeps sending 257-byte WRITE that triggers

several DMAs to maximize PCIe consumption. As shown in 5.7d, the available RNIC BPS

therefore is capped by the PCIe bandwidth and is substantially smaller than 25 Gbps. Both

SR-IOV and HW TC successfully reduce Beta’s rate and improve Alpha’s performance,

but to a limited extent. The key reason is that given the same amount of RNIC BPS

consumption, Beta consumes more PCIe bandwidth than Alpha and should be paced more

in this situation. Similar to what is observed in the above cache contention scenario, Justitia

reduces Beta more because of its larger message size and only satisfies Alpha’s guarantee.
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Harmonic’s hardware monitor allows us to accurately track each tenant’s PCIe bandwidth

consumption and allocate PCIe bandwidth accordingly based on tenants’ guarantee. For

example, each tenant is allowed to consume half of the PCIe bandwidth (i.e., roughly

16 Gbps) in this situation.

5.6.4 Performance Isolation for End-to-End Applications

We evaluate how Harmonic provides performance isolation for a real application. We use

an RDMA-based Redis [143] as our tenant workload. We use the same Husky attack

workloads described in the previous section as attackers. Similarly, our isolation goal is

to enforce fair share resource allocation between the Redis application and the attackers.

We also enable both SR-IOV and HW TC as a comparison. We do not evaluate Justitia’s

performance for two reasons: (1) Jusitia needs application modification to fully support

its isolation and is not secured for real cloud deployments; (2) Justitia does not support

READ operations in the latest drivers.

Redis over RDMA implements an RDMA backend transport to accelerate Redis key-

value store and has been large-scale deployed in industry [143]. We use this redis-benchmark

application to generate 1KB get and set workloads, and measure its average application

QPS. This benchmark can achieve about 450K QPS, consuming 4.2 Gbps BPS and 1.2 Mrps

DRPS. This is less than its performance guarantee, so the goal is that Redis’s performance

should not be affected by any attacker. We then run those four types of attacks without

isolation, with SR-IOV + HW TC, and with Harmonic. As shown in Figure 5.8, all four

types of attack successfully exhaust specific types of RDMA resources and cause a drastic

Redis performance drop. When isolation is enabled, we observe that both SR-IOV + HW

TC and Harmonic successfully provide protection against an attacker that tries to exhaust

network bandwidth. Though SR-IOV + HW TC does not consider processing capacity,

Redis achieves its guarantee under processing capacity contention with SR-IOV + HW

TC. This is probably because Redis workload is more robust to the processing capacity

contention. However, SR-IOV + HW TC fails to provide sufficient isolation when cache
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Figure 5.8: Performance of Redis over RDMA across different attack types and isolation
schemes.

or PCIe bandwidth is contended. Harmonic proactively monitors these microarchitecture

resource contentions and applies rate limit according to per tenant’s usage. Harmonic

therefore successfully maintains Redis’s performance within the tolerance level when on-

NIC cache or PCIe bandwidth is under contention performing 1.3x„1.4x better than the

combination of two state-of-the-art isolation solutions.

5.6.5 Overhead Analysis

Hardware and PCIe costs. Our hardware cost analysis based on the implementation report

from AMD Vivado [8] shows that PIPS, with an internal reference clock frequency set

at 250 MHz, consumes 8,571 LUTs (i.e., 0.95% of VCK190 FPGA LUT resources), and

554 BRAMs (i.e., 57.29% of VCK190 FPGA BRAM resources) mainly used to store host

mapping entries.

We also measure the cost of PCIe bandwidth for updating mappings and collecting

statistics between the host and PIPS. RDMA application does not frequently invoke control

verbs during data transmission, the mapping updates consumption is therefore negligible.

During our evaluation of various Husky’s attack workloads, we observe that the mapping

updates only consume no more than 8 Mbps (0.025%) extra PCIe bandwidth. The extra

PCIe bandwidth consumption caused by polling statistics is determined by the polling

frequency. In practice, we poll these statistics every 100 us and we find it already sufficient

to achieve an accurate rate control and enforce performance isolation. The per tenant

PCIe bandwidth consumption is 64 Mbps for host-to-switch direction and 76.8 Mbps for
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switch-to-host direction, which can be comfortably accommodated by the bandwidth slack

between PCIe and RNIC line rate. The detailed calculation and analysis is in §5.12.

Harmonic daemon currently only consumes 33.5% of a single CPU core and scales with

negligible CPU usage increment. The CPU usage is determined by the frequency of polling

statistics.

Network performance overheads. We run microbenchmarks using perftest to measure

the latency, achieved bandwidth, and request throughput with and without Harmonic to

analyze network overheads introduced by Harmonic. For brevity, we show the results of

RDMA READ in Table 5.2. We demonstrate the latency penalty under different packet

sizes in Figure 5.9. While there is a marginal increase in latency overhead with larger

packet sizes, Harmonic adds less than 2 us to the round-trip latency across all packet sizes.

This is mainly because our PCIe switch is implemented in FPGA, which is less performant

than traditional ASIC-based PCIe switches on the host and SmartNICs. Furthermore,

employing PCIe extender card and FMC+ to PCIe root module for the purpose of full-

system operation can also incur additional latency. Note that our monitoring feature is

decoupled with the PCIe switch forwarding functionality, so the monitoring feature does

not contribute to this overhead at all. Besides, Harmonic introduces only negligible drops

in network bandwidth or request throughput.

To summarize, Harmonic’s overhead is negligible for high-speed RDMA networks. Ad-

ditionally, we believe that the monitoring and rate limiting functions inherently should

be integrated into future generations of RNICs. Overheads, such as the extra PCIe con-

sumption and the FPGA’s latency, will be further eliminated when these functions are

implemented within RNIC’s ASIC. For example, NVIDIA Bluefield-2 SmartNIC has an

embedded PCIe switch that routes RDMA traffic among RNIC ASIC, embedded ARM

CPUs, and host [97], and only introduces nanosecond-level latency overhead [133]. We

therefore believe Harmonic’s PIPS overhead can also be mostly eliminated by implemen-

tation in ASIC and being integrated into RNIC.
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Table 5.2: Network performance overhead.

Latency (us) Max. Bandwidth Max. Throughput
64B 64KB (Gbps) (Mrps)

Baseline 3.3 50.4 23.0 28.1

Harmonic 5.6 52.6 22.8 28.1
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Figure 5.9: Latency overhead across different packet sizes. The green and orange lines
present the absolute round trip latency with left y-axis when packet size differs. The blue
line demonstrates the round trip latency overhead is less than 2 us using the right y-axis.

5.7 Discussion

Scaling to higher-speed network. We believe our solution is scalable to 100/200 Gbps RNICs

because the overhead of Harmonic (i.e., FPGA resources usage, extra PCIe bandwidth

consumption) does not increase with higher network capacity. The concerns may fall on

whether TLP analyzer can keep up with higher PCIe bandwidth and whether the mapping

manager scales to store more mapping entries. Our TLP analyzer can handle higher PCIe

bandwidth, as the average search and update time of our design for one mapping entry

is 7 cycles at 250MHz frequency. This can be even further minimized with increased

parallelism. The architecture of the mapping manager can easily be extended to a multi-

hashing hierarchy, thereby facilitating the storage of a greater number of mappings with

only a marginal increase in search time. Additionally, concepts from match-action table of

P4 switch and more advanced mapping management like binary search or Cuckoo hashing

can be implemented on top of PIPS to further reduce memory overheads. In the meanwhile,

the scalability concerns are notably mitigated when considering an ASIC implementation
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with optimized logic interconnections and resource utilization while running at a higher

frequency.

Is our performance abstraction easy for users to understand? Our performance ab-

straction is more complex than traditional performance abstraction which only considers

network bandwidth. We believe this is necessary because RDMA network is indeed more

complex and application developers are already interacting with this performance abstrac-

tion when developing RDMA programs [56, 58]. We only extend the abstraction to include

more architectural resources that users can directly control, such as the number of QPs.

These extended metrics are no difference from the number of vCPUs or the size of mem-

ory in today’s cloud VMs specifications. We believe developers should be aware of these

resources in order to write performant and predictable RDMA applications.

Deployability of Harmonic. Harmonic requires both hardware and software modifi-

cations to existing clouds. From the perspective of hardware, Harmonic uses PIPS as a

prototype to measure per-tenant RDMA resource consumption at runtime. In practice,

the best implementation entry point should be within the RNIC regarding performance

and hardware costs. One leading technology enterprise is currently integrating part of

our designs into their next-generation RNIC. In terms of software, Harmonic needs to

have the full control of the RDMA kernel drivers to manage control verbs for all tenants.

Containerized clouds have already provided such control since all tenants are sharing the

same kernel managed by cloud operators. Harmonic software therefore can be deployed in

containerized clouds without any barriers. In VM-based clouds, native SR-IOV does not

support managing control verbs for tenants since guest kernel drivers can directly com-

municate with RNICs. Extra modifications to both guest kernel drivers and hypervisors

are required to deploy Harmonic in these scenarios. Existing solutions such as HyV [110]

and MasQ [42] have already virtualized all control verbs involving hypervisor in VM-based

clouds. This provides feasible entry points to integrate Harmonic’s software features into

these solutions.

RDMA-friendly rate limiting. We currently repurpose RNIC’s native rate limiters to
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modulate tenants’ RDMA resource usage by sending CNPs. This achieves efficiency and

is transparent to applications, but we acknowledge that sending CNPs from software may

not be the best approach in the future. For example, a transient network congestion may

affect the accuracy of such rate limiting mechanism. Emerging RNIC features such as pro-

grammable congestion control (PCC) [98] allow customized congestion control algorithms.

This potentially provides a more straightforward and accurate way to leverage RNIC’s rate

limiter for performance isolation purposes. For example, a data receiver can send special-

ized packets to specify the maximal sending rate that the data sender can enforce, similar

to TCP receive window.

Generality of Harmonic. Harmonic currently targets at RDMA performance isolation,

focusing on the bottlenecked RNIC microarchitecture resources. We believe Harmonic can

also be leveraged for other scenarios besides RDMA networks. For example, multiple I/O

devices (e.g., GPU and NIC) may be connected to the same PCIe switch and thereby

contend on PCIe and memory bus resources [63]. Harmonic can also be adapted to isolate

resources among different I/O devices and hence manage the complex intra-host network.

5.8 Related Works

Understanding microarchitecture resources in RNICs. Research community has already

started to study the hardware resources in RNICs. Existing works focus on how to avoid

certain performance anomalies caused by NIC resources from the application layer [58, 56,

92, 19, 62]. Husky [62] discusses the definition of RNIC microarchitecture and conducts a

holistic study on how different RDMA operations make use of on-NIC microarchitecture

resources. Kalia et al. [58] provide guidelines for writing efficient high-performance RDMA

programs. These works target understanding or optimizing the RDMA programs and the

usage of some specific RNIC microarchitecture resources, but they do not provide RDMA

performance isolation.

RNIC design. Several works have been conducted to optimize RNIC design [132, 91,
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131, 71]. SRNIC [132] modifies both protocols and RNIC architecture to improve on-NIC

memory efficiency and utilization for better scalability. IRN [91] proposes to enable fast loss

recovery on NIC to avoid reliance on lossless fabrics. These works contribute to improving

RDMA performance. However, our work targets at providing performance isolation for

multi-tenant RDMA clouds.

Understanding intra-host communication. Intra-host communication has received increas-

ing attention in research communities [63, 94, 70, 138, 4, 5]. Breaking Band [138] leverages

an expensive commercial PCIe analyzer to get a system-level PCIe latency breakdown.

Min [88] implements a simple soft PCIe switch to obtain CPU-GPU communication pat-

terns. Neugebauer et al. [94] analyze the PCIe theoretical model and study how PCIe

affects network performance. Harmonic targets a different angle. It sniffers intra-host

communication traffic to monitor RDMA network behaviors for RDMA performance iso-

lation.

Performance isolation and QoS. Previous research [13, 38, 53, 112, 114, 65, 141, 139, 48]

has already provided software-based solutions implemented on the endpoints (hosts) and

achieved performance isolation and QoS, by ensuring VM-pair level bandwidth guarantee.

However, centering around the TCP/IP kernel network stack, they mainly focus on the

bandwidth contention of the network fabric (e.g., switch, router, etc.) and provide pure

software solutions to the narrow problem. PicNIC [65] uses the number of CPU cycles spent

on the packet processing as a criterion of NIC contention for TCP/IP networks. Harmonic

is an orthogonal and complementary research work, with a focus on performance isolation

on the RDMA-capable endhost. An end-to-end network performance isolation solution

requires isolation mechanisms in different components of the network, including both inter-

host network bandwidth and RDMA NIC resources on the endhost. Harmonic provides a

microarchitecture-resource-aware solution for the RDMA NIC resource isolation in addition

to traditional network bandwidth.
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(a) Address-to-Object/Tenant Mapping Entry Format.
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(b) Statistics Entry Format.

Figure 5.10: Address-to-object/tenant mapping and statistics entry formats.

5.9 Summary

We propose the first RDMA performance isolation solution for public clouds, Harmonic,

that is aware of microarchitecture resources. Harmonic consists of an FPGA-based pro-

grammable intelligent PCIe switch to measure per-tenant RDMA resource usage and an

RDMA-friendly rate limiter to modulate RDMA resource per tenant. Harmonic requires

no application modification. We evaluate Harmonic using the state-of-the-art test suite for

RDMA performance isolation. Our evaluation results show that Harmonic delivers strong

RDMA performance isolation in a multi-tenant public cloud setting, compared to all the

existing solutions.

5.10 Appendix 1: Harmonic Prototype Setup

We present the prototype setup of Harmonic in Figure 5.11. PIPS is implemented on an

AMD Versal VCK190 FPGA board, connecting to the host system with a PCIe extender

card. We connect RNIC with PIPS using an FMC+ expansion connector because the

FPGA board does not contain a PCIe root connector interface. FMC+ is built upon

FPGA Mezzanine Card (FMC) standard [129] which is a versatile and widely adopted

standard for high-performance interfacing FPGAs with external devices.

5.11 Appendix 2: Entries for Mappings and Statistics

We illustrate the address-to-object/tenant mapping and statistics entry format in Fig-

ure 5.10. We explain how each field is derived to offer a comprehensive understanding of

the mapping mechanism in Harmonic.
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Figure 5.11: Programmable Intelligent PCIe Switch (PIPS) Prototype.

5.11.1 Address-to-Object/Tenant Mappings

There are mainly three types of objects (i.e., memory regions, queue structures, and RDMA

metadata) in RDMA. All these objects will be pinned in the host physical memory after

creation, and the RNIC will maintain virtual-to-physical address mappings to DMA these

objects.

The first type of object is application’s memory region (MR). Applications register

these MRs through ibv reg mr, which is processed by mlx5 ib.ko drivers in our NVIDIA

testbed. We modify mlx5 ib.ko to record the starting physical address, the process ID

(PID) of the caller, the size and the memory flags (e.g., IBV ACCESS REMOTE WRITE, which

allows remote write) of this region. Note that we use container’s process ID as tenant ID

(TID).

The second type of objects is queue structures, including send/receive queues, com-

pletion queues, and the doorbell (memory mapped registers) for these queues. When an

application initiates RDMA data verbs, the memory is accessed by the RNIC to fetch

WQEs from send/receive queues or write completion queue entries (CQE) to completion

queues. The memory for these objects is allocated and pinned during the allocation of

these projects, such as mlx5 ib create qp in mlx5 ib.ko. Similarly, we record the PID of

the caller, and the address and size of these objects.
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The third type of object is RDMA metadata managed by RNIC driver and firmware,

including QP contexts and memory translation/protection tables. When other two types

of objects (e.g., a QP) are created, the firmware reserves a few pinned pages and allocates

metadata (e.g., a QP context) in the pinned pages. We record the information on these

pinned pages in a similar fashion as described above.

Figure 5.10a shows our unified entry to update such address-to-object/tenant mappings

to our PCIe switch. Note that the most significant 16 bits of address-to-object/tenant

mapping entry together serve as an operation code that notifies PIPS to either insert or

delete the entry in PIPS. We reserve the second 16-bit field considering the possibility of

other customization demands. Our modified drivers will fill in the remaining five fields and

expose these entries to Harmonic daemon through system files.

5.11.2 Per-tenant RDMA Statistics

We store the monitored RDMA resource statistics in a 128-bit structured entry as shown in

Figure 5.10b. As discussed in §5.4, the TLP analyzer leverages the physical address enclosed

in TLP headers to search and retrieve the corresponding address-to-object/tenant mapping

entry from which we identify the object and tenant associated with the TLPs. Then we

collect and record PCIe bandwidth consumption, number of PCIe transactions, direction

of TLPs, accessed memory type, and other information from TLP headers (Figure 5.4) in

per-tenant statistics entries.

5.12 Appendix 3: Harmonic PCIe Overhead Computation

PIPS maintains 40 statistic entries per tenant and each entry is 8-byte. We issue PCIe

read request to read these statistics from PIPS. For a PCIe read request, the minimum

PCIe protocol overhead is 20 bytes [107]. Upon receiving the read request, PIPS responds

with a completion packet (i.e., Completion TLP), containing 8-byte payload and a 16-byte

PCIe protocol overhead. Therefore, for a single statistics read, it consumes 800-byte for

host-to-PIPS direction 960-byte for PIPS-to-host direction in total.
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Assuming Harmonic daemon polls the statistics every N milliseconds. The extra PCIe

bandwidth consumed therefore is 1000
N ˚ 8 ˚ 800 “ 6.4

N Mbps for the host-to-PIPS direction

and 7.68
N Mbps for PIPS-to-host direction. Harmonic currently poll statistics every 100 us,

which consumes 64 Mbps and 76.8 Mbps for these two directions. This overhead is less than

0.25% of the total PCIe bandwidth. Together with the extra PCIe bandwidth consumed

by updating mappings, the overall PCIe bandwidth overhead of Harmonic is below 0.31%

which can be comfortably accommodated by the existing 21.87% bandwidth slack between

PCIe and RNIC line rate. Note that we assume our PCIe limit as 32 Gbps, which has the

same network-to-PCIe capacity ratio as higher speed networks (e.g., 100 and 200 Gbps).

This means that the PCIe overhead of our solution remains negligible with a higher network

speed. Not to mention that this PCIe overhead only depends on the number of tenants

and the frequency of polling, independent on network bandwidth.
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6. Conclusion
In modern datacenter networks landscape, RDMA performance anomalies pose significant

challenges, leading to degraded network reliability and unpredictable application perfor-

mance. How can we proactively uncover and prevent these performance anomalies in

RDMA networks? This dissertation reveals that the key is to delve into RDMA’s microar-

chitecture. This dissertation presents three systems and demonstrates the feasibility of

developing a systematic understanding of the complex RDMA microarchitecture. More

importantly, we show that by leveraging critical insights gained from this understanding,

we can effectively and efficiently identify and prevent RDMA performance anomalies.

We next discuss the lessons we have learned, the broader impacts of this work, and a

few research directions left for future exploration.

6.1 Lessons

Besides the thesis statement, the most important lesson, we share a few other lessons we

have learned throughout this dissertation.

RDMA Performance Is Critical in Modern Datacenter Networks. In modern datacen-

ters, the scale of jobs has grown significantly. For example, a single LLM training job may

use hundreds or even thousands of machines together as a cluster. This makes the per-

formance of underlying RDMA network a pivotal factor. The reliability and performance

of the entire cluster can drastically degrade if any individual node or single point-to-point

RDMA communication underperforms. For instance, in widely-used collective operations

like allreduce (e.g., ring-based), a single slow receiver can slow down the completion time

of the entire collective operation. Moreover, RDMA’s inherent characteristics can even

amplify these issues. For example, RDMA typically requires lossless fabrics, and even a

performance anomaly at one node can have catastrophic consequences, such as triggering

Priority Flow Control (PFC) deadlocks, threatening the entire cluster. In this disserta-

tion, the testing results of Collie and Husky strongly demonstrate the severity of these
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performance anomalies.

As a result, the reliability requirements for datacenter networks have significantly in-

creased. Operators must rigorously test and validate RDMA networks to ensure they are

free from these anomalies. Collie and Husky of this dissertation serve as a systematic test

suite to uncover these potential threats.

RDMA Microbehaviors Beyond Data Transmission. In traditional networks, perfor-

mance issues are typically associated solely with data transmission behaviors. However,

in RDMA networks, due to the nature of hardware offloading, numerous other microbe-

haviors, such as control path operations (e.g., connection setup) and error handling (e.g.,

handle receiver not ready errors), also consume or even exhaust significant microarchitec-

ture resources on RDMA NICs, impacting overall performance. This makes it essential to

include all these behaviors within the scope of our study to uncover and prevent perfor-

mance anomalies. In developing Husky, we systematically study all these behaviors and

analyze their impacts on the microarchitecture resources usage. We were the first to reveal

that control paths operations and error handling can have substantial impact on RDMA

performance, even pausing the entire RNIC. In Harmonic, we carefully modulate all these

behaviors for each application to ensure performance isolation and prevent anomalies.

Hardware and Software Co-Design Is Essential for RDMA Performance. Another lesson

from our work is that hardware assistance is crucial when optimizing RDMA performance.

On the one hand, the understanding of hardware (especially those microarchitecture) is

crucial. For example, without thoughtful software design that understands and accommo-

dates these hardware features, the performance benefits of RDMA may be underutilized

or even negated (e.g., a workload that triggers performance anomaly). Collie and Husky

has delivered a set of design guidelines for application developers and cloud operators to

write high-performance and anomaly-free RDMA programs.

On the other, hardware assistance makes performance monitoring, diagnosis, and man-

agement much easier for RDMA networks. Since the data transmission of RDMA com-

pletely bypasses the OS kernel and the host CPU, cloud operators do not have sufficient
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visibility and control over RDMA traffics through traditional approaches (e.g., through OS

kernels or hypervisors). For example, none of existing approaches can accurately monitor

per application’s RDMA microbehaviors, such as how many on-NIC cache miss an applica-

tion triggers. With hardware assistance, such as hardware-assisted monitoring proposed in

Harmonic, we can develop a solution to accurately monitor and modulate per application’s

RDMA microarchitecture resource usage, enforcing performance isolation. It is worthwhile

to note that such hardware assistance does not need to be enforced through a separate

component. These capabilities can be also integrated into future generations of RNICs to

be directly accessed by users.

6.2 Impacts

The broader impacts of this dissertation include both intellectual merits that motivate a

line of work to continue to improve RDMA networks reliability in modern data centers, and

real world impacts that can directly enhance the robustness and performance of existing

infrastructures.

6.2.1 Intellectual Merits

Novel Insights into RDMA Microarchitecture and Microbehaviors. This dissertation is the

first to systematically reveal the complex microarchitecture of modern RDMA networks.

In addition, we not only have studied data verbs, but also have comprehensively analyzed

all types of RDMA microbehaviors, including control verbs and error handling. We in-

vestigate how they impact resource usage and overall RDMA performance, and introduce

a qualitative microarchitecture resource consumption model for modern RDMA networks.

These novel findings have provided a theoretical foundation for many research in RDMA

domain [73, 117, 137, 132, 1, 74, 67, 76, 75, 41, 125].

Design Guidelines for RDMA Application Development. Besides the understanding of

RDMA microarchitecture and microbehaviors, we have also provided a set of design guide-

lines for developers to write anomaly-free applications. For example, Collie suggest an
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RDMA RPC library developer to use RDMA WRITE and configure queue depth appro-

priately, and suggest a DML training framework developer to avoid scatter-gather batching

to avoid performance anomalies in particular clusters [54]. Many of the guidelines summa-

rized in Collie and Husky have also been adopted by a line of recent works [18, 117, 55, 125].

Inspiration for Next-Generation RNIC Design. This dissertation also provides many

inspirations for future RNIC design. Collie and Husky demonstrates that the visibility (e.g.,

hardware counters) provided by RNIC can be valuable for cloud providers to better operate

their RDMA networks. The analysis of modern RDMA microarchitecture also reveal its

limitations, such as the lack of fine-grained isolation. Besides, Harmonic strongly proves

that adding only a small set of features (e.g., monitoring) will be sufficient to build robust

solutions to prevent RDMA performance interference and anomalies on commodity RNICs.

Some of these inspirations are also applied and further explored in recent works [132].

6.2.2 Real-world Impacts

Open-Source Software. Collie and Husky projects are fully open-sourced and available

at https://github.com/host-bench/. This enables groups from both academia and in-

dustry to use these systems to understand RDMA microarchitecture, uncover performance

anomalies, and continue to research on improving the reliability and performance of RDMA

networks.

Security Bulletins and Firmware Upgrades. We use Collie and Husky to test various

types of testbeds and have uncovered numerous new performance anomalies. All these

unseen anomalies have been acknowledged and reproduced by corresponding RNIC man-

ufacturers. Many of the anomalies have raised huge concerns because of their potential

security vulnerabilities, leading to release of security bulletins and firmware upgrades [100].

This strongly demonstrates the huge impacts of this dissertation that it has helped to im-

prove the reliability and performance of commodity RNICs, which benefits many RNIC

manufacturers and major cloud providers.
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Wide Deployment in Industry Production. The practical impacts of this dissertation

also extends beyond the anomalies themselves. Collie and Husky have been adopted by

many industrial collaborators. Collie is used in ByteDance, Microsoft, and NVIDIA to

test their RDMA networks. Husky has been applied by many RNIC manufacturers and

cloud providers to identify performance interference in their RNICs, including Microsoft,

NVIDIA, Intel, and DreamBig. In addition, parts of Harmonic are also being integrated

into the design of next-generation RNICs by one of the major cloud providers to enable

robust performance isolation.

6.3 Future Works

We next introduce a few directions for future research exploration.

6.3.1 Performance Anomalies of Various I/O Devices.

Besides RNICs, various types of I/O devices, such as GPUs, SSDs, and FPGAs, have

been widely deployed in today’s datacenters. The performance of these high-speed I/O

devices is crucial for modern datacenter applications. For example, the LLM training job

heavily rely on GPU for its computation and frequently access storage devices for data

loading or saving checkpoints. In this dissertation, we primarily focus on performance

anomalies in RDMA networks. However, performance anomalies that happen to these

other I/O devices can also lead to catastrophic consequences, including slowdown and

even impairing the training accuracy. Therefore, we believe to systematically uncover and

prevent performance anomalies of various types of I/O devices is increasingly important

in modern datacenters. Besides, most of these I/O devices encompass hardware offloading

nature and have complex microarchitecture, similar to RNICs. Therefore, we believe the

methodology and the key idea behind this dissertation can be insightful when conducting

research on other I/O devices.
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6.3.2 Towards Complex Intra-Host Networks.

As datacenter networks evolve, the complexity of the intra-host network is growing, partic-

ularly with the integration of the aforementioned accelerators. This complex interconnect

also presents unique challenges for traditional network solutions. For example, the resource

bottleneck within a host (e.g., memory bus, and PCIe) can cause new type of congestion,

the host congestion. Such bottlenecks may also lead to severe performance interference

among applications. This dissertation presents a set of solutions to identify and address

problems for the end-to-end RDMA network. However, the complex intra-host fabrics has

not been fully explored yet. There are still many interesting and crucial problems to ad-

dress for the increasingly important intra-host networks. For example, a few recent works

have studied the host congestion problems [63, 4, 74], but how to enforce a holistic solution

for fine-grained monitoring and control over the heterogeneous intra-host fabrics remains

unexplored.

6.3.3 Enhancing Fault Tolerance in RDMA Networks.

RDMA networks typically require fine-tuning of both the host systems and network fabrics

(e.g., lossless) to achieve desired performance. This makes RDMA performance highly sus-

ceptible to hardware faults or misconfigurations. Our dissertation provides effective tools

for identifying performance anomalies in offline situations and preventing performance in-

terference at runtime. However, certain dynamically occurring problems, like link flapping,

are beyond its scope. These types of faults can also drastically degrade RDMA networks’

performance, and RDMA’s unique characteristics (e.g., hardware offloading) make many

traditional approaches ineffective. These problems become increasingly critical for modern

datacenter applications, especially those with high performance demand and substantial

failure overheads, such as LLM training. Developing RDMA networks with robust fault tol-

erance mechanisms is thus a crucial and compelling research direction, offering significant

benefits for the reliability of datacenter applications.
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6.4 Final Remarks

In this dissertation, I propose a novel thesis, arguing that it is both practical and essential

to understand the complex microarchitecture of modern RDMA networks. With this sys-

tematic understanding, we can effectively and efficiently identify and prevent critical per-

formance anomalies. While we do not claim that the designs and implementations based

on this idea are the only solutions, these designs and implementations strongly support

our proposed statement and methodology. We believe that the insights into and utilization

of RDMA microarchitecture contributed by this dissertation will enable the community to

further enhance the reliability and performance of RDMA, laying a solid foundation for

building future high-speed network infrastructure.
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[24] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No Compromises:
Distributed Transactions with Consistency, Availability, and Performance. In SOSP,
2015.

[25] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, Xiaosong Ma,
and Daniel Sanchez. KPart: A Hybrid Cache Partitioning-Sharing Technique for
Commodity Multicores. In HPCA, 2018.

[26] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. Reexam-
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complete, we just did not know it yet!, 2021.

[117] Feng Ren, Mingxing Zhang, Kang Chen, Huaxia Xia, Zuoning Chen, and Yongwei
Wu. Scaling up memory disaggregated applications with smart. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, pages 351–367, 2024.

[118] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler.
ReDMArk: Bypassing RDMA Security Mechanisms. In USENIX Security, 2021.

[119] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels. In
USENIX Security, 2017.

[120] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. Fast and Concurrent
RDF Queries with RDMA-Based Distributed Graph Exploration. In OSDI, 2016.

[121] Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas Saha.
Sharing the Data Center Network. In NSDI, 2011.

[122] David Shue, Michael J. Freedman, and Anees Shaikh. Performance Isolation and
Fairness for Multi-Tenant Cloud Storage. In OSDI, 2012.

[123] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica Wong-Chan,
Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
Hassan M. G. Wassel, Behnam Montazeri, Simon L. Sabato, Joel Scherpelz, and
Amin Vahdat. 1RMA: Re-Envisioning Remote Memory Access for Multi-Tenant
Datacenters. In SIGCOMM, 2020.

[124] Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian Perrig, and
Torsten Hoefler. NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Ap-
plications. In Proceedings of the 29th ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 2765–2778, 2022.

[125] Tu Tran, Goutham Kalikrishna Reddy Kuncham, Bharath Ramesh, Shulei Xu, Hari
Subramoni, Mustafa Abduljabbar, and Dhabaleswar K DK Panda. Ohio: Im-
proving rdma network scalability in mpi alltoall through optimized hierarchical and
intra/inter-node communication overlap design. In 2024 IEEE Symposium on High-
Performance Interconnects (HOTI), pages 47–56. IEEE, 2024.

[126] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang. Pythia: Remote oracles for the
masses. In 28th USENIX Security Symposium (USENIX Security 19), pages 693–710,
Santa Clara, CA, August 2019. USENIX Association.

[127] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA Support for Datacenter
Applications. In SOSP, 2017.

[128] Ben Verghese, Anoop Gupta, and Mendel Rosenblum. Performance isolation: Sharing
and isolation in shared-memory multiprocessors. In ASPLOS VIII, 1998.

152



[129] VITA. FPGA Mezzanine Card Plus (FMC+) Standard. https://www.vita.com/

fmc, 2024.

[130] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda.
Isolation mechanisms for High-Speed Packet-Processing pipelines. In NSDI, 2022.

[131] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bojie Li, Binzhang Fu, and Kun
Tan. StaR: Breaking the Scalability Limit for RDMA. In Proceedings of the IEEE
29th International Conference on Network Protocols (ICNP), pages 1–11, 2021.

[132] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li, Xinchen
Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng
Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin Xu, Ruiqing Feng, Tao
Ding, Kai Chen, and Chuanxiong Guo. SRNIC: A Scalable Architecture for RDMA
NICs. In Proceedings of the 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 1–14, 2023.

[133] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen. Charac-
terizing Off-path SmartNIC for Accelerating Distributed Systems. In Proceedings
of the 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 987–1004, 2023.

[134] Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kompella. The Only Constant is
Change: Incorporating Time-Varying Network Reservations in Data Centers. In
SIGCOMM, 2012.

[135] Understanding Performance of PCI Express Systems. https://docs.xilinx.com/

v/u/en-US/wp350, 2018.

[136] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang, and Lidong Zhou.
Fast Distributed Deep Learning over RDMA. In EuroSys, 2019.

[137] Zhuolong Yu, Bowen Su, Wei Bai, Shachar Raindel, Vladimir Braverman, and Xin
Jin. Understanding the Micro-Behaviors of Hardware Offloaded Network Stacks with
Lumina. In Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM), pages 1074–1087, 2023.

[138] Rohit Zambre, Megan Grodowitz, Aparna Chandramowlishwaran, and Pavel Shamis.
Breaking Band: A Breakdown of High-Performance Communication. In Proceedings
of the 48th International Conference on Parallel Processing (ICPP), pages 1–10,
2019.

[139] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang, Haibing
Guan, and Ming Zhang. Guaranteeing deadlines for inter-datacenter transfers. In
Proceedings of the Tenth European Conference on Computer Systems, pages 1–14,
2015.

[140] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. CPI2: CPU Performance Isolation for Shared Compute Clusters. In EuroSys,
2013.

153



[141] Yinda Zhang, Peiqing Chen, and Zaoxing Liu. Octosketch: Enabling real-time, con-
tinuous network monitoring over multiple cores. In NSDI 2024. USENIX Association,
2024.

[142] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf Chowdhury. Justitia: Soft-
ware Multi-Tenancy in Hardware Kernel-Bypass Networks. In NSDI, 2022.

[143] Zhenwei Pi. Redis Over RDMA Implementation. https://github.com/redis/

redis/pull/11182, 2022.

[144] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA Deployments. In SIGCOMM,
2015.

154



Biography
Xinhao KONG is a Ph.D. candidate in the Department of Computer Science at Duke

University, advised by Prof. Danyang Zhuo, since August 2021. His research interests

include datacenter networks and high speed networks, with a focus on RDMA. He leads

the project of RDMABench, a testing framework for RDMA/Infiniband software/hardware

stack. The ambition of this project is to assist cloud providers and hardware vendors in

building more reliable, efficient, and secure next generations of RDMA networks.

Before Duke, Xinhao received his bachelor’s degree in Computer Science from Peking

University in 2020.

155


