
Machine Fault Tolerance for Reliable Datacenter Systems

Danyang Zhuo∗, Qiao Zhang, Dan R. K. Ports, Arvind Krishnamurthy and Thomas Anderson
University of Washington

{danyangz, qiao, drkp, arvind, tom}@cs.washington.edu

ABSTRACT
Although rare in absolute terms, undetected CPU, memory,
and disk errors occur often enough at datacenter scale to
significantly affect overall system reliability and availability.
In this paper, we propose a new failure model, called Machine
Fault Tolerance, and a new abstraction, a replicated write-
once trusted table, to provide improved resilience to these
types of failures. Since most machine failures manifest in
application server and operating system code, we assume a
Byzantine model for those parts of the system. However, by
assuming that the hypervisor and network are trustworthy, we
are able to reduce the overhead of machine-fault masking to
be close to that of non-Byzantine Paxos.

1. INTRODUCTION
Machine failures are widespread in datacenter environ-

ments. Today’s largest datacenters are estimated to have up to
hundreds of thousands of servers. At this massive scale, hard-
ware faults are an everyday occurrence, ranging from failures
of entire machines to DRAM bit errors and undetected disk
corruption.

The challenge for system designers is to mask as many of
these failures as possible. Replication protocols like Paxos [12]
are a mainstay of today’s distributed systems, making it pos-
sible to build reliable services in the presence of crash fail-
ures. However, standard replication protocols are not robust
to more complex failures such as those caused by memory
errors or non-deterministic software bugs. These types of
failures are increasingly a problem for datacenter applica-
tions. For example, memory corruptions and software bugs
in Google’s Paxos library have led to inconsistencies in the
Chubby lock database [5], and a single-bit corruption caused
Amazon S3 to become unavailable for hours in 2008 [1].

Byzantine fault tolerant (BFT) replication protocols offer
an option for these types of failures, ensuring that the sys-
tem operates correctly even when a fraction of the nodes
misbehave in arbitrary or even malicious ways. However,

∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

APSys ’14, June 25-26, 2014, Beijing, China
Copyright 2014 ACM 978-1-4503-3024-4/14/06 ...$15.00.

these protocols present significant barriers to adoption. First,
they are complex, leading to the question of whether bugs in
their implementation will themselves reduce system reliabil-
ity. Moreover, despite much recent work to reduce the cost of
BFT protocols [3, 4, 9, 11], they remain prohibitively expen-
sive. They require higher degrees of replication (3 f +1 repli-
cas instead of 2 f +1 to tolerate f failures), greater message
complexity (sometimes involving all-to-all communication),
and expensive cryptographic operations (taking more than
1 µs per message).

As an alternative, we aim to build a set of machine-fault
tolerant (MFT) protocols that tolerate a class of hardware
machine errors. The fault model allows application code to
corrupt data or send incorrect responses. Unlike BFT, we
assume parts of the infrastructure – namely, a hypervisor
running on each machine and the network fabric – are trusted
to behave correctly. This model of error is one that allows for
an efficient implementation: we are able to provide MFT state
machine replication with 2 f +1 replicas and no cryptography,
using a protocol whose efficiency approaches that of Paxos.

In this paper, we present a protocol for providing efficient
MFT replication. The basis for our protocol is a new prim-
itive implemented in the hypervisor called the replicated
write-once trusted table, an API that allows applications to
register messages with sequence numbers and remotely re-
trieve messages by their corresponding sequence numbers.
Because our model trusts not only the hypervisor but also the
communication between hypervisors in the data center, the
replicated write-once trusted table can be implemented with-
out the use of cryptography. We show how to leverage this
primitive to build a protocol, H-MFT, that provides efficient
MFT replication using only 2 f +1 replicas.

2. BACKGROUND
Machine failures beyond simple crash failures, e.g. mem-

ory errors and disk corruptions, are increasingly significant
in datacenters. Measurements of DRAM errors in Google
datacenters [17] show that around 1.29% of their servers ex-
perience at least one memory error per year of operation that
is not masked by error-correcting codes. Such memory errors
can and have resulted in catastrophic consequences [1].

Today’s state of the art approach in industry for fault-
tolerance is Paxos replication [12], an efficient technique
that can mask f crash failures with 2 f + 1 replicas. While
Paxos has proven effective for tolerating crash failures, it
remains vulnerable to other types of machine failures, such

1

http://dx.doi.org/10.1145/2637166.2637235

as memory errors.
The other well-known replication technique, Byzantine

fault tolerance (BFT), can handle any type of non-fail-stop
errors, but induces considerable overhead. Traditional ap-
proaches to BFT require at least 3 f +1 replicas [16], O(n2)
communication cost, and extensive use of cryptography. More-
over, the complexity of BFT protocols is another barrier for
its adoption because deployment of BFT protocols would
require significant expertise and administrative effort.

The addition of a trusted component changes the landscape
of BFT protocols, making it possible to break the 3 f + 1
replica lower bound. For example, A2M [7] uses an attested
append-only log, and TrInc [14] uses an attested monotonic
counter; both can reduce the number of replicas required to
2 f +1. MinBFT and MinZyzzyva [18] use a similar trusted
component to reduce the number of protocol steps. The key
theoretical insight is that preventing an adversary from equiv-
ocating (sending conflicting messages to multiple replicas)
averts many of the most insidious attacks.

However, preventing equivocation is not sufficient by it-
self. Transferable authentication is also required: each node
must be able not only to authenticate a message from another
node, but also to forward the message to a third node that will
also be able to authenticate it. This requirement was recently
formally proven by Clement et al. [8]. What this means in
practice for this class of protocols is that their trusted com-
ponents require expensive digital signatures for attestation
(the MAC-based authenticators pioneered in PBFT [4] are
not sufficient).

Our work takes a different approach. By relying on the
trusted components at each node to communicate with each
other over a trusted network fabric, we are able to provide non-
equivocation and transferable authentication without cryptog-
raphy. This property is important in the datacenter environ-
ment, because, as we see below, cryptographic costs can
dwarf network latency as a protocol cost.

2.1 The Costs of Cryptography
To understand how much cryptographic costs contribute

to the protocol, we measure the cost of digital signatures
for messages in Fig. 1 and compare to datacenter network
latency. Cryptographic costs are measured using the standard
Java cryptography library on a Intel i7-2600 3.4GHz 8-core
system running Linux 3.8.

The computational cost of digital signatures is substan-
tial, particularly for the small message sizes commonly used
in BFT protocols. In particular, it takes at least 1 ms (for
1024-bit RSA) or 40 ms (for 4096-bit RSA) to generate RSA
signatures. Secondly, more secure signatures take longer time
to generate as the message size grows due the additional com-
putational complexity in more secure hash function. RSA-
SHA256 takes 50% (for 1024-bit RSA) more time to generate
than RSA-SHA1 when signing a 1MB message. More im-
portantly, as we use longer key size, the computational cost
of generating signatures is significantly more than the com-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

100Bytes 1KB 1MB

La
te

n
cy

(i
n
 m

s)

Message Size

Latency to Generate a 1024-bit RSA Digital Signature

MD5(RSA1024)
SHA1(RSA1024)

SHA256(RSA1024)

(a) 1024-bit RSA Digital Signature

 0

 10

 20

 30

 40

 50

 60

 70

100Bytes 1KB 1MB

La
te

n
cy

(i
n
 m

s)

Message Size

Latency to Generate a 4096-bit RSA Digital Signature

MD5(RSA4096)
SHA1(RSA4096)

SHA256(RSA4096)

(b) 4096-bit RSA Digital Signature

Figure 1: Measurement of cryptography costs

munication cost. For example, when we move from 1024-bit
RSA (in Fig. 1a) to 4096-bit RSA (in Fig. 1b), the cost of
generating signatures increases 40 times for small control
messages.

All of these numbers dwarf the network fabric latency in a
modern datacenter network, which can be as low as 6 µs [10]
– 3–4 orders of magnitude less than a digital signature. What
this means is that the latency of BFT protocols in the dat-
acenter is dominated not by the latency of communication
but the cost of constructing digital signatures. This disparity
seems only likely to increase as advances in cryptography
continually necessitate more complex signature algorithms,
while trends in network and OS design aim to provide support
for ultra-low-latency communication.

Some protocols (e.g., MinBFT [18]) assume that all nodes
have a globally shared secret key that enables a MAC to be
used for transferable authentication. Although realizing this
assumption introduces problematic key management chal-
lenges, it enables far faster cryptographic operations. Even so,
it is not a panacea: the cost of computing a SHA256 HMAC
remains on the order of 100µs, considerably higher than the
network latency, meaning that cryptography costs are still a
major component of the protocol cost.

3. MFT MODEL
We present a new fault tolerance model, Machine Fault

Tolerance (MFT), that is slightly weaker than BFT yet cap-
tures most machine failures including those beyond simple
crash failures. The MFT model assumes that the cloud infras-

2

(a) BFT Model: A2M/TrInc/MinBFT

(b) MFT Model

Figure 2: In (a), a sender proves to a recipient that it does not
equivocate on a message by attaching an attestation generated
by its trusted hypervisor. In (b), the message is registered in
the sender’s hypervisor and replicated to the recipient’s hy-
pervisor through a trusted channel, and therefore the message
is automatically authenticated.

tructure, i.e. a hypervisor running on each machine and the
network connecting them, will not fail arbitrarily.

More precisely, our model assumes that the system con-
sists of a set of nodes that run both application code and a
trusted hypervisor. The application code may fail arbitrar-
ily; the trusted component implemented in the hypervisor is
assumed to fail only by stopping (if the machine crashes).
We justify this assumption by observing that hypervisors can
have a smaller code base than the full software stack running
on a given machine (for example, TrustVisor [15] is imple-
mented in approximately 6000 lines of code, whereas the
Linux kernel alone exceeds 15 million lines [2]). Moreover,
because hypervisor code is run infrequently compared to the
OS and applications and has a smaller memory footprint, it is
less prone to machine faults such as memory errors.

We assume an asynchronous network connects the hyper-
visors, but trust it not to modify or spoof packets. Packets can
still be dropped, reordered and duplicated in transmission.
We make the standard assumption (required for liveness) that
packets between two correct nodes that are repeatedly re-
transmitted will eventually be delivered. Trusting the network
not to modify packets is in some sense unconventional: a
traditional view of wide-area fault tolerance would make no
assumptions about the behavior of the Internet links connect-
ing nodes, which could potentially be operated by a malicious
party. However, we are targeting a datacenter environment,
where the network is a trusted infrastructure component. Al-

though the network may suffer outages, the network compo-
nents (switches, etc) run a less complex software stack and
are therefore less likely to suffer complex, arbitrary failures.

The result of this model is that MFT protocols can be
implemented more efficiently than BFT protocols. In BFT
systems that use trusted components, e.g. A2M and TrInc, ap-
plications authenticate a message by generating an attestation
from the trusted component and sending both the message
and its attestation to the recipient in the untrusted domain,
shown in Fig. 2a. Because the data path passes through the
untrusted domain, i.e. the application and the network, the
attestation must be digitally signed by the trusted component
to prevent from being tampered with. In our model, protocol
messages are directly sent between hypervisors, and therefore
do not cross into untrusted domain, as shown in Fig. 2b. The
recipient application can be certain that the messages are au-
thenticated even without the protection of digital signatures.
Our model thus enables a much more efficient implementa-
tion without using cryptography.

4. REPLICATED WRITE-ONCE TRUSTED
TABLE

The fundamental primitive underlying our protocol is the
replicated write-once trusted table, a simple abstraction that
provides equivocation-free communication between user ap-
plications. It implements transferable authentication using
the trusted network rather than using cryptography.

A replicated write-once trusted table is owned by one of
the replicas (the table owner), and replicated to a set of other
replicas (the table clients). The table owner can write mes-
sages into the table, but cannot subsequently modify them.
Table clients are notified of new messages in the table, and
can retrieve them by id. Because the messages are immutable
and replicated, a pointer comprising the table id and message
id can be used to forward a message to another client while
providing authentication.

The replicated write-once trusted table is designed to be a
simple API that can be implemented easily in a hypervisor
but can be applied to many applications; Sec. 5 shows how to
apply it to MFT replication. In this respect, it is similar to the
trusted log from A2M [7], with a novel modification to the
retrieval mechanism.

4.1 API
The full API of replicated write-once trusted table is shown

in Figure 3. We describe in detail the semantics of our API
below.
Table Creation. To disseminate messages reliably to other
replicas, an application invokes create_table(clientID_

list) to create and own a trusted table. The application ob-
tains a data-center unique table id, which is a tuple consisting
of the IP address of the hypervisor and a table id locally
unique to the hypervisor.
Message Registration. Having created a trusted table, the
application registers messages by invoking put(T, UI, msg).

3

• create_table(clientID_list)→ table_id
Creates a new table with the specified list of clients, and returns a unique table id.

• put(T, UI, message)
Writes the specified message into the table with id UI, assuming that T is a valid table ID and UI is available for write.
If UI maps to an existing message or has been garbage collected, put instead returns UNAVAILABLE.

(a) API of Table Owner
• get(T, UI)→ message

Returns the message corresponding to id UI in table T if it is available. Otherwise, returns GARBAGE-COLLECTED if
the message has been garbage collected or NOT-WRITTEN-YET if no message with id UI has yet been written.

(b) API of Table Client
• truncate(T, UI)

Verifies that T is a valid table ID. Upon receiving (size_o f _clientID_list +1)/2 matching truncate requests, garbage
collect all table entries with sequence number smaller than UI.

(c) API common to Table Clients and Table Owner

Figure 3: Replicated Write-Once Trusted Table API

In order to maintain write-once semantics, the hypervisor first
verifies that the sequence number does not already map to
a message or has been garbage collected. If the sequence
number is available for write, the message is stored in the
table corresponding to the given sequence number.
Message Retrieval. Rather than providing attestations that
untrusted clients can exchange to verify that the messages
are stored in the table (as in A2M and TrInc), recipients re-
trieve messages from the table client in their hypervisor by
invoking get(T, UI). The advantage of this retrieval mecha-
nism is that messages are pulled from a trusted table of the
message owner to the intended application via only trusted
components, i.e. the hypervisors and the trusted communica-
tion channel between the hypervisors. As a result, messages
arrive at the intended application authenticated without the
protection of digital signatures.
Garbage Collection. Without garbage collection of table
contents, hypervisor memory usage might grow without bound.
At the same time, a table owner cannot unilaterally garbage-
collect table contents because this might allow it to remove
a message needed by a remote host. Accordingly, f + 1
truncate(T, UI) calls must be made from different hypervi-
sors before the table owner can safely remove messages with
ID lower than UI.

4.2 Table Replication
The contents of a table must be replicated, because other

replicas may need to refer to a message even if the table owner
has crashed. To make this possible, table replicas are created
on the hypervisors of all other clients. When the table owner
adds a new message to the table, the message is broadcast to
the other replicas, which store it in their replica of the table.
If a table client calls get for a message not available in the
local replica, the hypervisor contacts the table owner; if the
table owner is non-responsive, it requests the message from

any other replica that might have it available.

5. H-MFT
In this section, we describe a Hypervisor-MFT protocol

that leverages our table API to prevent server equivocation.
Every H-MFT protocol message needs to be stored in the
replicated write-once trusted table so that the other replicas
in the system can see them in the same order. Each replica
has one table that stores every protocol message it sends.
We replace the attestation mechanism in MinBFT [18] with
our replicated table retrieval mechanism, and also modify its
garbage collection subprotocol to work with our table API.
Despite the similarity with MinBFT, our protocol cannot
tolerate Byzantine behaviors in the network and hypervisors.
However, H-MFT does work correctly in handling other kinds
of non-crash failures, just as MinBFT.

Figure 4: H-MFT common case

5.1 Design
Client. A client sends its request 〈REQUEST,o, t,c〉σc to
the primary and waits for replies, where o is the request
opcode, t is the client request identifier (used to ensure that a
request is not executed more than once), c is the clientID, and
the request is signed by the client’s private key σc. Each reply
〈REPLY, t,v,r〉 received by the client has the client request

4

identifier t, current view number v, and the application reply
r. The client needs to wait for f +1 matching replies to be
sure that the reply is valid and the request is persisted in
the system, because at least one of the replies comes from
the correct replica, and since the correct replica’s hypervisor
has the latest client request, the request will be eventually
propagated to all the other correct replicas. As is common
practice in today’s Internet, the client request is signed at the
client side. We therefore do not take into account the latency
from generating digital signatures for client requests in our
evaluation.
Replica. Each replica maintains a current sequence number,
UI, for its own table and the last seen sequence numbers for
all the other replicas. In order to send a message, replica si
advances UIi by one and puts the message with the new UIi.
In order to receive a message from another replica s j, replica
si always uses the next expected sequence number for s j to
retrieve the message.

Upon receiving a client request, the primary replica sp puts
a tuple (UIp,〈PREPARE,v,sp,m〉) into its table, where UIp
is the current sequence number for primary replica sp, v is
the current view number and m is the original client request.
All the other replicas fetch the client request from the pri-
mary’s table. Upon receiving a PREPARE message, replica
si verifies the client digital signature to ensure that the re-
quest is an authenticated request from the client and checks
the client request identifier to ensure that the request does
not get executed twice. If the request is valid, replica si puts
(UIi,〈COMMIT,v,si,sp,UIp,m〉) into its table for sequence
number UIi. Replica si then waits for f +1 matching COM-
MIT message from the other replicas’ tables before executing
the client request and sending a reply 〈REPLY, t,v,r〉 to the
client.
Garbage Collection. We periodically garbage collect the
tables. For k consecutive client requests, replica si check-
points its application state and puts (UIi,〈CHECKPOINT,
si,UIlatest ,d〉) where UIlatest is the sequence number for the
last executed request and d is the digest of the checkpointed
state. Upon receiving f +1 matching CHECKPOINT mes-
sages with identical UIlatest and d, replica si considers the
checkpoint stable. We call the set of references, (s j,UI j), to
the f +1 matching CHECKPOINT table entries a checkpoint
certificate. Replica si then checks if its own checkpoint state
matches with that in the checkpoint certificate. If the replica
finds its own checkpoint state stale, it initiates a state transfer
from a correct replica using the same protocol of PBFT [4].
Otherwise, it helps the other replicas to garbage collect their
tables by calling truncate request on all replicas with the
appropriate sequence number UI.
View Change. When replica si suspects the primary to be
faulty, it puts (UIi,〈REQ_VIEW_CHANGE,si,v,v′〉) where
v is the current view number and v′ = v + 1 is the next
view number. Upon receiving f +1 matching REQ_VIEW_
CHANGE requests, replica si updates its view to v′, and puts
(UIi,〈VIEW_CHANGE,si,v′,Clatest ,O〉) where Clatest is the

latest stable checkpoint certificate, O is the set of all mes-
sages sent by the replica si since the last checkpoint. Replica
si then stops responding to messages from the old view v.
Upon receiving f +1 matching VIEW_CHANGE requests,
replica si now has a new view certificate.

The new primary sp′ writes (UIp′ ,〈NEW_VIEW,sp′ ,v′,
VVC,S,new UIp′〉),where VVC is the new view certificate, S is
the set of requests accepted since the last checkpoint and new
UIp′ is the next sequence number new primary i will write
to in the view v′. Once a replica receives the NEW_VIEW
message, it checks the new view certificate and whether S
can be computed from the certificate. If the NEW_VIEW
request is valid, it waits every request in S to be executed
before accepting requests for v’.

5.2 Discussion
Without garbage collection, H-MFT is a simple translation

of MinBFT [18] using our table API. For any message pro-
tected by digital signature in MinBFT, we send and retrieve
the message through the trusted hypervisor and network. For
any certificate composed of f +1 digital signatures used in
MinBFT, we use f +1 references to the replicated tables for
authentication. However, a possible issue from using our repli-
cated tables is that references in certificates can be invalid
if the original messages referenced are garbage collected.
Therefore, to prove the correctness of H-MFT, we only need
to show that our garbage collection subprotocol does not
violate the correctness of MinBFT.

Whenever a new checkpoint c is stable, we want to safely
garbage collect all messages before the previous stable check-
point c− 1. We need to ensure that all existing certificates
do not reference messages before checkpoint c−1. If replica
s j has a certificate with an invalid reference to a message
before c−1, at least f +1 replicas believe that checkpoint c
is stable for the truncation to have happened for c−1. Since
the latest stable checkpoint cannot be garbage collected (f
faulty replica are not enough to remove the latest checkpoint
certificate), s j is guaranteed to be able to state transfer to the
latest stable checkpoint.

6. EVALUATION
Our design uses the replicated write-once trusted table to

provide MFT replication without many of the most expen-
sive components of BFT protocols. In Table 1, we compare
the complexity of H-MFT with several existing protocols:
PBFT [4], Zyzzyva [11], A2M-PBFT-EA [7], MinBFT [18],
and Paxos [12] as a baseline for comparison.

Like other proposals that use a trusted component (A2M-
PBFT-EA and MinBFT), H-MFT reduces the replication over-
head to 2 f +1 replicas. However, it does so without the use
of digital signatures and message authentication codes that
we have shown in Section 2.1 represents a significant cost
for datacenters. H-MFT provides replication in only four
message delays, the optimal achievable for a non-speculative
protocol. We anticipate that building a speculative protocol

5

PBFT-MAC [4] Zyzzyva [11] A2M-PBFT-EA [7] MinBFT [18] H-MFT Paxos [12]

replication factor 3f+1 3f+1 2f+1 2f+1 2f+1 2f+1
number of message rounds 5 3 5 4 4 3 or 4
number of digital signatures 0 0 4 0 0 0
number of HMAC 2 2 0 2 0 0
number of messages O(n2) O(n) O(n2) O(n2) O(n2) O(n)

Table 1: Performance Comparison of BFT, MFT protocols and Paxos

akin to Zyzzyva using the replicated write-once trusted table
abstraction could allow us to further improve on H-MFT’s
performance, eliminating the O(n2) message cost.

7. RELATED WORK
Machine Fault Tolerance can be provided by BFT pro-

tocols, but at an excessive cost. Traditional BFT protocols
require at least 3 f +1 replicas [13]. Prior work [3, 4, 9, 11]
has reduced the communication cost of BFT protocols, but
cannot reduce the replication cost.

Our work is inspired by recent work that reduces the repli-
cation cost to 2 f + 1 using a trusted component, including
A2M [7], TrInc [14] and MinBFT [18]. Each makes use of
a trusted component on each end host machine to attest and
order messages sent by the sender to prevent equivocation.
A2M uses an attested append-only memory as a trusted log
for each BFT protocol message. TrInc and MinBFT reduce
the space requirement on the trusted component by using a
simple monotonic counter instead. However, neither A2M
nor TrInc can avoid using digital signatures, because the mes-
sages are exchanged via an untrusted network and require
cryptographic attestations to prevent tampering. MinBFT re-
places digital signatures with HMACs, reducing the cost of
cryptography (though it still exceeds datacenter network la-
tency). However, this requires establishing a globally shared
symmetric key.

Clement et al. [8] formally prove that both non-equivocation
and transferable authentication are required to reduce BFT
replication cost to 2 f +1. Transferable authentication is nec-
essary because in a 2 f +1 replica group, in the worst case,
only one correct replica has the correct protocol message. The
correct replica has to prove to the other replicas that the mes-
sage is indeed authenticated. Transferable authentication is
traditionally provided using digital signatures; our replicated
write-once trusted table instead leverages a trusted network
to provide transferable authentication without cryptography.

Chun et al. [6] propose using a single hypervisor as a
trusted base to provide BFT for virtual machines on the same
physical machine. However, the single hypervisor becomes
the single point of failure in the system.

A complementary approach to reducing replication cost is
to separate execution from agreement [19,20]. This approach
divides BFT protocols into an agreement phase ordering in-
coming requests, and an execution phase where the requests
are executed by application code. While the agreement phase

still requires 3 f +1 replicas, only 2 f +1 replicas need to par-
ticipate in the execution phase. ZZ [19] takes this approach
further, using only f +1 execution replicas in the fault-free
case, and activating additional replicas when there are fail-
ures. This approach is complementary to ours; we anticipate
that using a hybrid approach, we can construct a MFT pro-
tocol that requires only f +1 execution replicas and 2 f +1
agreement replicas.

8. CONCLUSION
The authenticated communication channel between hyper-

visors in datacenter network provides a new opportunity to
rethink the fault tolerance model. We argue that machine
faults cover most of the non-crash failures in datacenters, and
can be handled efficiently by a new class of MFT protocols.
Using our new replicated write-once trusted table abstraction,
we can implement an efficient protocol, H-MFT, for building
more robust distributed systems.

Acknowledgments
We thank the members of the UW systems and networking
research groups for their insightful feedback and lively dis-
cussions. This work was supported by the National Science
Foundation under awards #0963754 and #1016477, and by
the Wilma Bradley and Hacherl Endowed Fellowships.

9. REFERENCES
[1] Amazon S3 availability event: July 20, 2008. http:

//status.aws.amazon.com/s3-20080720.html.
[2] Linux kernel in 2011: 15 million total lines of code and

Microsoft is a top contributor.
http://arstechnica.com/business/2012/04/
linux-kernel-in-2011-15-million-total-
lines-of-code-and-microsoft-is-a-top-
contributor/.

[3] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-scalable Byzantine fault-tolerant
services. In SOSP, 2005.

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In OSDI, 1999.

[5] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live -
an engineering perspective. In PODC, 2007.

[6] B.-G. Chun, P. Maniatis, and S. Shenker. Diverse replication
for single-machine Byzantine-fault tolerance. In USENIX
ATC, 2008.

[7] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick to
their word. In SOSP, 2007.

6

http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
http://arstechnica.com/business/2012/04/linux-kernel-in-2011-15-million-total-lines-of-code-and-microsoft-is-a-top-contributor/
http://arstechnica.com/business/2012/04/linux-kernel-in-2011-15-million-total-lines-of-code-and-microsoft-is-a-top-contributor/
http://arstechnica.com/business/2012/04/linux-kernel-in-2011-15-million-total-lines-of-code-and-microsoft-is-a-top-contributor/
http://arstechnica.com/business/2012/04/linux-kernel-in-2011-15-million-total-lines-of-code-and-microsoft-is-a-top-contributor/

[8] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues. On the
(limited) power of non-equivocation. In PODC, 2012.

[9] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
Hq replication: A hybrid quorum protocol for Byzantine fault
tolerance. In OSDI, 2006.

[10] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable low latency for data center
applications. In SOCC ’12, San Jose, CA, USA, Oct. 2012.

[11] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In SOSP,
2007.

[12] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 1998.

[13] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst., 1982.

[14] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
TrInc: Small trusted hardware for large distributed systems. In
NSDI, 2009.

[15] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB reduction and attestation.
In IEEE Symposium on Security and Privacy, 2010.

[16] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in
the presence of faults. Journal of the ACM, 27(2):228–234,
Apr. 1980.

[17] B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram errors in
the wild: A large-scale field study. In SIGMETRICS, 2009.

[18] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and
P. Verissimo. Efficient Byzantine fault-tolerance. IEEE
Transactions on Computers, 2013.

[19] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and
E. Cecchet. ZZ and the art of practical BFT execution. In
EuroSys, 2011.

[20] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. In SOSP, 2003.

7

	Introduction
	Background
	The Costs of Cryptography

	MFT Model
	Replicated Write-once Trusted Table
	API
	Table Replication

	H-MFT
	Design
	Discussion

	Evaluation
	Related Work
	Conclusion
	References

