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Abstract

Many deep learning tasks have to deal with graphs (e.g., pro-
tein structures, social networks, source code abstract syntax
trees). Due to the importance of these tasks, people turned to
Graph Neural Networks (GNNs) as the de facto method for
learning on graphs. GNNs have become widely applied due
to their convincing performance. Unfortunately, one major
barrier to using GNNs is that GNNs require substantial time
and resources to train. Recently, a new method for learning on
graph data is Graph Neural Tangent Kernel (GNTK) (Du et al.
2019a). GNTK is an application of Neural Tangent Kernel
(NTK) (Jacot, Gabriel, and Hongler 2018) (a kernel method)
on graph data, and solving NTK regression is equivalent to
using gradient descent to train an infinite-wide neural network.
The key benefit of using GNTK is that, similar to any kernel
method, GNTK’s parameters can be solved directly in a single
step. This can avoid time-consuming gradient descent. Mean-
while, sketching has become increasingly used in speeding
up various optimization problems, including solving kernel
regression. Given a kernel matrix of n graphs, using sketching
in solving kernel regression can reduce the running time to
o(n3). But unfortunately such methods usually requires ex-
tensive knowledge about the kernel matrix beforehand, while
in the case of GNTK we find that the construction of the ker-
nel matrix is already O(n2N4), assuming each graph has N
nodes. The kernel matrix construction time can be a major
performance bottleneck when the size of graphs N increases.
A natural question to ask is thus whether we can speed up the
kernel matrix construction to improve GNTK regression’s end-
to-end running time. This paper provides the first algorithm to
construct the kernel matrix in o(n2N3) running time.

Introduction
Graph Neural Networks (GNNs) have quickly become a pop-
ular method for machine learning on graph data. GNNs have
delivered ground-breaking results in many important areas
of AI, including social networking (Yang et al. 2020a), bio-
informatics (Zitnik and Leskovec 2017; Yue et al. 2020),
recommendation systems (Ying et al. 2018), and autonomous
driving (Weng et al. 2020a; Yang et al. 2020b). Given the im-
portance of GNNs, how to train GNNs efficiently has become
one of the most important problems in the AI community.
However, efficient GNN training is challenging due to the
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relentless growth in the model complexity and dataset sizes,
both in terms of the number of graphs in a dataset and the
sizes of the graphs.

Recently, a new direction for fast GNN training is to use
Graph Neural Tangent Kernel (GNTK). (Du et al. 2019a) has
shown that GNTK can achieve similar accuracy as GNNs
on many important learning tasks. At that same time, GNTK
regression is significantly faster than iterative stochastic gra-
dient descent optimization because solving the parameters in
GNTK is just a single-step kernel regression process. Further,
GNTK can scale with GNN model sizes because the regres-
sion running time grows only linearly with the complexity of
GNN models.

Meanwhile, sketching has been increasingly used in op-
timization problems (Clarkson and Woodruff 2013; Nelson
and Nguyên 2013; Meng and Mahoney 2013; Boutsidis and
Woodruff 2014; Song, Woodruff, and Zhong 2017; Andoni
et al. 2018; Jiang et al. 2021; Dong, Lee, and Ye 2021),
including linear regression, kernel regression and linear pro-
gramming. Various approaches have been proposed either
to sketch down the dimension of kernel matrices then solve
the low-dimensional problem, or to approximate the kernel
matrices by randomly constructing low-dimensional feature
vectors then solve using random feature vectors directly.

It is natural to think about whether we can use sketching
to improve the running time of GNTK regression. Given n
graphs where each graph has N nodes, the kernel matrix has a
size of n×n. Given the kernel matrix is already constructed, it
is well-known that using sketching can reduce the regression
time from O(n3) to o(n3) under certain conditions. However,
in the context of GNTK, the construction of the kernel matrix
need the running time of O(n2N4) to begin with. This is
because for each pair of graphs, we need to compute the
Kronecker product of those two graphs. There are n2 pairs in
total and each pair requires N4 time computation. The end-
to-end GNTK regression time is sum of the time for kernel
matrix construction time and the kernel regression time. This
means, the kernel matrix construction can be a major barrier
for adopting sketching to speed up the end-to-end GNTK
regression time, especially when we need to use GNTK for
large graphs (large N ).

This raises an important question:
Can we speed up the kernel matrix construction time?
This question is worthwhile due to two reasons. First, cal-



culating the Kronecker product for each pair of graphs to
construct the kernel matrix is a significant running time bottle-
neck for GNTK and is a major barrier for adopting sketching
to speed up GNTK. Second, unlike kernel matrix construc-
tion for traditional neural networks in NTK, the construction
of the kernel matrix is a complex iterative process, and it is
unclear how to use sketching to reduce its complexity.

We accelerate the GNTK constructions in two steps. 1)
Instead of calculating the time consuming Kronecker product
for each pair of graphs directly, we consider the multiplica-
tion of a Kronecker product with a vector as a whole and
accelerate it by decoupling it into two matrix multiplications
of smaller dimensions. This allows us to achieve kernel ma-
trix construction time of O(n2N3); 2) Further, we propose a
new iterative sketching procedure to reduce the running time
of the matrix multiplications in the construction while provid-
ing the guarantee that the introduced error will not destruct
the generalization ability of GNTK. This allows us to further
improve the kernel matrix construction time to o(n2N3).

To summarize, this paper has the following results and
contributions:

• We identify that the kernel matrix construction is the
major running time bottleneck for GNTK regression in
large graph tasks.

• We improve the kernel construction time in two steps:
1) We decouple the Kronecker-vector product in GNTK
construction into matrix multiplications; and 2) We de-
sign an iterative sketching algorithm to further reduce the
matrix multiplication time in calculating GNTK while
maintaining its generalization guarantee. Overall, we are
able to reduce the running time of constructing GNTK
from O(n2N4) to o(n2N3).

• We rigorously quantify the impact of the error resulted
from proposed sketching and show under certain assump-
tions that we maintain the generalization ability of the
original GNTK.

Related Work
Sketching Sketching has many applications in numerical
linear algebra, such as linear regression, low-rank approxima-
tion (Clarkson and Woodruff 2013; Nelson and Nguyên 2013;
Meng and Mahoney 2013; Boutsidis and Woodruff 2014;
Razenshteyn, Song, and Woodruff 2016; Song, Woodruff,
and Zhong 2017; Andoni et al. 2018), distributed problems
(Woodruff and Zhong 2016; Boutsidis, Woodruff, and Zhong
2016), federated learning (Song, Yu, and Zhang 2021), re-
inforcement learning (Wang et al. 2020), tensor decomposi-
tion (Song, Woodruff, and Zhong 2019), polynomial kernels
(Song et al. 2021), kronecker regression (Diao et al. 2018,
2019), cutting plane method (Jiang et al. 2020), generative
adversarial networks (Xiao, Zhong, and Zheng 2018) and
linear programming (Lee, Song, and Zhang 2019; Ye 2020;
Jiang et al. 2021; Song and Yu 2021; Dong, Lee, and Ye
2021).

Graph neural network (GNN) Graph neural networks are
machine learning methods that can operate on graph data
(Zhang, Cui, and Zhu 2020; Wu et al. 2020b; Chami et al.

2020; Zhou et al. 2020), which has applications in various
areas including social science (Wu et al. 2020a), natural sci-
ence (Sanchez-Gonzalez et al. 2018; Fout 2017), knowledge
graphs (Hamaguchi et al. 2017), 3D perception (Wang et al.
2019; Sarlin et al. 2020), autonomous driving (Shi and Ra-
jkumar 2020; Weng et al. 2020b), and many other research
areas (Dai et al. 2017). Due to its convincing performance,
GNN has become a widely applied graph learning method
recently.

Neural tangent kernel (NTK) The theory of NTK has
been proposed to interpret the learnablity of neural networks.
Given neural network f : W×D −→ R with parameter W ∈
W and input data x ∈ D, the neural tangent kernel between
data x, y is defined to be (Jacot, Gabriel, and Hongler 2018)

Kntk(x, y) := E
W∼N

[〈
∂f(W,x)

∂W
,
∂f(W, y)

∂W

〉]
.

Here expectation E is over random Gaussian initialization.
It has been shown under the assumption of the NTK matrix
being positive-definite (Du et al. 2019b; Arora et al. 2019a,b;
Song and Yang 2019; Lee et al. 2020; Brand et al. 2021;
Song, Yang, and Zhang 2021; Song, Zhang, and Zhang 2021))
or separability of training data points (Li and Liang 2018;
Allen-Zhu, Li, and Song 2019b; Song, Yang, and Zhang
2021; Allen-Zhu, Li, and Song 2019a)), training (regularized)
neural network is equivalent to solving the neural tangent
kernel (ridge) regression as long as the neural network is
polynomial sufficiently wide. In the case of graph neural
network, we study the corresponding graph neural tangent
kernel (Du et al. 2019a).

Notations. Let n be an integer, we define [n] :=
{1, 2, · · · , n}. For a full rank square matrix A, we use A−1

to denote its true inverse. We define the big O notation such
that f(n) = O(g(n)) means there exists n0 ∈ N+ and
M ∈ R such that f(n) ≤ M · g(n) for all n ≥ n0. For
a matrix A, we use ∥A∥ or ∥A∥2 to denote its spectral norm.
Let ∥A∥F denote its Frobenius norm. Let A⊤ denote the
transpose of A. For a matrix A and a vector x, we define
∥x∥A :=

√
x⊤Ax. We use ϕ to denote the ReLU activation

function, i.e. ϕ(z) = max{z, 0}.

Preliminaries
In this work, we consider a vanilla graph neural network
(GNN) model consisting of three operations: AGGREGATE,
COMBINE and READOUT. In each level of GNN, we have
one AGGREGATE operation followed by a COMBINE opera-
tion, which consists of R fully-connected layers. At the end
of the L level, the GNN outputs using a READOUT operation,
which can be viewed as a pooling operation.

Specifically, let G = (U,E) be a graph with node set U
and edge set E. Assume it contains |U | = N nodes. Each
node u ∈ U is given a feature vector hu ∈ Rd. We formally
define the graph neural network fgnn(G) as follows. We use
the notation h

(l,r)
u to denote the intermediate output at level

l ∈ [L] of the GNN and layer r ∈ [R] of the COMBINE
operation.



To start with, we set the initial vector h
(0,R)
u = hu ∈

Rd, ∀u ∈ U . For the first L layer, we have the following
AGGREGATE and COMBINE operations.

AGGREGATE operation. There are in total L AGGRE-
GATE operations. For any l ∈ [L], the AGGREGATE operation
aggregates the information from last level as follows:

h(l,0)
u := cu ·

∑
a∈N (u)∪{u}

h(l−1,R)
a .

Note that the vectors h
(l,0)
u ∈ Rm for all l ∈ [2 : L], and

the only special case is h
(1,0)
u ∈ Rd. cu ∈ R is a scaling

parameter, which controls weight of different nodes during
neighborhood aggregation.

COMBINE operation. The COMBINE operation has R
fully-connected layers with ReLU activation: ∀r ∈ [R],

h(l,r)
u := (cϕ/m)1/2 · ϕ(W (l,r) · h(l,r−1)

u ) ∈ Rm.

The parameters W (l,r) ∈ Rm×m for all (l, r) ∈ [L] ×
[R]\{(1, 1)}, and the only special case is W (1,1) ∈ Rm×d.
cϕ ∈ R is a scaling parameter, which is set to be 2, following
the initialization scheme used in (Du et al. 2019a; He et al.
2015).

After the first L layer, we have the final READOUT opera-
tion before output.

READOUT operation. We consider two different kinds of
READOUT operation.
1) In the simplest READOUT operation, the final output of
the GNN on graph G is

fgnn(G) :=
∑
u∈U

h(L,R)
u ∈ Rm.

2) Using the READOUT operation with jumping knowledge
as in (Xu et al. 2018), the final output of the GNN on graph
G is

fgnn(G) :=
∑
u∈U

[h(0,R)
u , h(1,R)

u , · · · , h(L,R)
u ] ∈ Rm×(L+1).

When the context is clear, we also write fgnn(G) as
fgnn(W,G), where W denotes all the parameters: W =

(W (1,1), · · · ,W (L,R)).
We also introduce the following current matrix multipli-

cation time and the notations for Kronecker product and
vectorization for completeness.

Fast matrix multiplication. We use the notation
Tmat(n, d,m) to denote the time of multiplying an n × d
matrix with another d × m matrix. Let ω denote the ex-
ponent of matrix multiplication, i.e., Tmat(n, n, n) = nω.
The first result shows ω < 3 is (Strassen 1969). The cur-
rent best exponent is ω ≈ 2.373, due to (Williams 2012;
Le Gall 2014). The common belief is ω ≈ 2 in the compu-
tational complexity community (Cohn et al. 2005; Williams
2012; Jiang et al. 2021). The following fact is well-known in
the fast matrix multiplication literature (Coppersmith 1982;
Strassen 1991; Bürgisser, Clausen, and Shokrollahi 1997) :
Tmat(a, b, c) = O(Tmat(a, c, b)) = O(Tmat(c, a, b)) for any
positive integers a, b, c.

Figure 1: Illustration of NTK (left) and GNTK (right). Here
K(·, ·) denotes the kernel function.

Kronecker product and vectorization. Given two matri-
ces A ∈ Rn1×d1 and B ∈ Rn2×d2 . We use ⊗ to denote
the Kronecker product, i.e., for C = A⊗B ∈ Rn1n2×d1d2 ,
the (i1 + (i2 − 1) · n1, j1 + (j2 − 1) · d1)-th entry of C is
Ai1,j1Bi2,j2 , ∀i1 ∈ [n1], i2 ∈ [n2], j1 ∈ [d1], j2 ∈ [d2]. For
any given matrix H ∈ Rd1×d2 , we use h = vec(H) ∈ Rd1d2

to denote the vector such that hj1+(j2−1)·d1
= Hj1,j2 ,

∀j1 ∈ [d1], j2 ∈ [d2].

Graph Neural Tangent Kernel Revisited
In this section, we revisit the graph neural tangent kernel
(GNTK) proposed in (Du et al. 2019a). A simplified illus-
tration is shown in Fig. 1. Following the setting discussed
in previous section, let G = (U,E) and H = (V, F ) be two
graphs with |U | = N and |V | = N ′. We use AG and AH to
denote the adjacency matrix of G and H . We give the recur-
sive formula to compute the kernel value Kgntk(G,H) ∈ R
induced by this GNN, which is defined as

Kgntk(G,H) := E
W∼N (0,I)

[〈∂fgnn(W,G)

∂W
,
∂fgnn(W,H)

∂W

〉]
,

where N (0, I) is a multivariate Gaussian distribution.
Recall that the GNN uses scaling factors cu for each

node u ∈ G. We define CG to be the diagonal matrix such
that (CG)u = cu for any u ∈ U . Similarly we define CH .
For each level of AGGREGATE and COMBINE operations
ℓ ∈ [0 : L] and each level of fully-connected layers in-
side a COMBINE operation r ∈ [0 : R], we recursively
define the intermediate matrices Σ(ℓ,r)(G,H) ∈ RN×N ′

and
K(ℓ,r)(G,H) ∈ RN×N ′

.
Initially we define Σ(0,R)(G,H), K(0,R)(G,H) ∈

RN×N ′
as follows: ∀u ∈ U, v ∈ V ,

[Σ(0,R)(G,H)]u,v := ⟨hu, hv⟩,
[K(0,R)(G,H)]u,v := ⟨hu, hv⟩.

Here hu, hv ∈ Rd denote the input features of u and v. Next
we recursively define Σ(ℓ,r)(G,H) and K(ℓ,r)(G,H) for
l ∈ [L] and r ∈ [R] by interpreting the AGGREGATE and
COMBINE operation.

Exact AGGREGATE operation. The AGGREGATE opera-
tion gives the following formula:

[Σ(ℓ,0)(G,H)]u,v

:= cucv
∑

a∈N (u)∪{u}

∑
b∈N (v)∪{v}

[Σ(ℓ−1,R)(G,H)]a,b,

[K(ℓ,0)(G,H)]u,v

:= cucv
∑

a∈N (u)∪{u}

∑
b∈N (v)∪{v}

[K(ℓ−1,R)(G,H)]a,b.

(1)



Figure 2: Illustration of our proposed sketching mechanism. Graphs G1, G2 are represented as adjacent matrices A1, A2. We
apply sketching matrices to approximately calculate A⊤

1 H1,2A
⊤
2 .

Exact COMBINE operation. The COMBINE operation
has R fully-connected layers with ReLU activation ϕ(z) =

max{0, z}. We use ϕ̇(z) = 1[z ≥ 0] to denote be the deriva-
tive of ϕ.

For each r ∈ [R], for each u ∈ U and v ∈ V , we define a
covariance matrix

[A(ℓ,r)(G,H)]u,v

:=

(
[Σ(ℓ,r−1)(G,G)]u,u [Σ(ℓ,r−1)(G,H)]u,v
[Σ(ℓ,r−1)(H,G)]u,v [Σ(ℓ,r−1)(H,H)]v,v

)
∈ R2×2.

Then we recursively define [Σ(ℓ,r)(G,H)]u,v and
[K(ℓ,r)(G,H)]u,v as follows:

[Σ(ℓ,r)(G,H)]u,v := cϕ · E
(a,b)∼N (0,[A(ℓ,r)(G,H)]u,v)

[
ϕ(a)ϕ(b)

]
,

[Σ̇(ℓ,r)(G,H)]u,v := cϕ · E
(a,b)∼N (0,[A(ℓ,r)(G,H)]u,v)

[
ϕ̇(a)ϕ̇(b)

]
,

[K(ℓ,r)(G,H)]u,v := [K(ℓ,r−1)(G,H)]u,v · [Σ̇(ℓ,r)(G,H)]u,v

+ [Σ(ℓ,r)(G,H)]u,v.

The intermediate results will be used to calculate the final
output of the corresponding GNTK.

Exact READOUT operation. As the final step, we compute
Kgntk(G,H) ∈ R using the intermediate matrices. This step
corresponds to the READOUT operation.

If we do not use jumping knowledge,

Kgntk(G,H) =
∑

u∈U,v∈V

[K(L,R)(G,H)]u,v.

If we use jumping knowledge,

Kgntk(G,H) =
∑

u∈U,v∈V

L∑
l=0

[K(l,R)(G,H)]u,v.

We briefly review the running time in previous work.
Theorem 1 (Running time of (Du et al. 2019a), simplified).
Consider a GNN with L AGGREGATE operations and L
COMBINE operations, and each COMBINE operation has R
fully-connected layers. We compute the kernel matrix using
n graphs {Gi = (Vi, Ei)}ni=1 with |Vi| ≤ N . Let d ∈ N+ be

the dimension of the feature vectors. The total running time
is

O(n2) · (Tmat(N,N, d) + L ·N4 + LR ·N2).

When using GNN, we usually use constant number of
operations and fully-connected layers, i.e., L = O(1), R =
O(1), and we have d = o(N), while the size of the graphs
can grow arbitrarily large. Thus it is easy to see that the
dominating term in the above running time is O(n2N4).

Approximate GNTK via Iterative Sketching

Now we consider the running time of solving GNTK regres-
sion. Despite rich related work to accelerate kernel regres-
sion by constructing random feature vector using sampling
and sketching methods, they all require sufficient knowl-
edge of the kernel matrix itself. While Theorem 1 shows
the running complexity of constructing GNTK can be as
large as O(n2N4), which dominates the overall computation
complexity especially in the case of relative large graphs
n = o(N2). Therefore, our main task focus on a fast con-
struction of the GNTK by randomization techniques, while
ensuring the resulting GNTK regression give same general-
ization guarantee.

To compute an approximate version of the kernel value
K̃(G,H) ∈ R such that K̃gntk(G,H) ≈ Kgntk(G,H),
we will use the notation Σ̃(ℓ,r)(G,H) ∈ RN×N ′

and
K̃(ℓ,r)(G,H) ∈ RN×N ′

to denote the approximated inter-
mediate matrices for each ℓ ∈ [0 : L] and r ∈ [0 : R]. We
observe that the computation bottleneck is to conduct the AG-
GREGATE operation (1), which takes O(N4) for obtaining
Σ(ℓ,0)(G,H) and K(ℓ,0)(G,H). Hence we apply random
sketching matrices SG ∈ Rb×N and SH ∈ Rb′×N ′

itera-
tively to accelerate the computation. Our proposed sketching
mechanism is shown in Fig. 2.

Approximate AGGREGATE operation. We note that
Eq. (1) can be equivalently rewrite in following forms us-



ing Kronecker product:

vec(Σ(ℓ,0)(G,H)) := ((CGAG)⊗ (CHAH))

· vec(Σ(ℓ−1,R)(G,H)),

vec(K(ℓ,0)(G,H)) := ((CGAG)⊗ (CHAH))

· vec(K(ℓ−1,R)(G,H)).

(2)

Now we make the following key observation about kronecker
product and vectorization.

Fact 2 (Equivalence between two matrix products and Kro-
necker product then matrix-vector multiplication). Given
matrices A ∈ Rn1×d1 , B ∈ Rn2×d2 , and H ∈ Rd1×d2 , we
have vec(AHB⊤) = (A⊗B) · vec(H).

Above fact implies the intermediate matrices Σ(ℓ,0)(G,H)
and K(ℓ,0)(G,H) can be calculated by

Σ(ℓ,0)(G,H) := CGAG · Σ̃(ℓ−1,R)(G,H) ·AHCH ,

K(ℓ,0)(G,H) := CGAG · K̃(ℓ−1,R)(G,H) ·AHCH .
(3)

We emphasize that the above Eq. (3) calculates matrix pro-
duction instead of Kronecker product, which reduces the
running time from O(N4) to O(Tmat(N,N,N)). This is our
first improvement in running time.

Further, we propose to introduce sketching matrices SG ∈
Rb×N and SH ∈ Rb′×N ′

iteratively into Eq. (3) as follows:

Σ̃(ℓ,0)(G,H) := CGAG · (S⊤
GSG) · Σ̃(ℓ−1,R)(G,H)

· (S⊤
HSH) ·AHCH ,

K̃(ℓ,0)(G,H) := CGAG · (S⊤
GSG) · K̃(ℓ−1,R)(G,H)

· (S⊤
HSH) ·AHCH .

(4)

Note that for the special case S⊤
GSG = S⊤

HSH = I , the
Eq. (4) degenerates to the original case. Such randomization
ensures the sketched version approximates the exact matrix
multiplication as in the following Lemma, which justifies our
approach to speed up calculation.

Lemma 3 (Informal, Error bound of adding sketching). Let
Si ∈ Rb×N ’s denote independent AMS matrices (Alon, Ma-
tias, and Szegedy 1999). Then for any given n2 matrices
H1,1, · · · , Hn,n ∈ RN×N and n matrices A1, · · · , An ∈
RN×N , we have the following guarantee with high probabil-
ity: for all i, j ∈ [n], A⊤

i S
⊤
i SiHi,jS

⊤
j SjAj ≈ A⊤

i Hi,jAj .

Apart from above mentioned AMS sketching matri-
ces, we point out other well-known sketching matrices
such as random Gaussian, SRHT (Lu et al. 2013), count-
sketch (Charikar, Chen, and Farach-Colton 2002), sparse
embedding matrices (Nelson and Nguyên 2013) also apply
in this case.

In the end, the COMBINE and READOUT operation
are the same as in the exact case, except now we are al-
ways working with the approximated intermediate matrices
Σ̃(ℓ,0)(G,H) and K̃(ℓ,0)(G,H).

Running Time Analysis
The main contribution of our paper is to show that we can
accelerate the computation of GNTK defined in (Du et al.
2019a), while maintaining a similar generalization bound.

In this section we first present our main running time im-
provement theorem.

Theorem 4 (Main theorem, running time). Consider a GNN
with L AGGREGATE operations and L COMBINE operations,
and each COMBINE operation has R fully-connected lay-
ers. We compute the kernel matrix using n graphs {Gi =
(Vi, Ei)}ni=1 with |Vi| ≤ N . Let b = o(N) be the sketch size.
Let d ∈ N+ be the dimension of the feature vectors. The total
running time is

O(n2) · (Tmat(N,N, d) + L · Tmat(N,N, b) + LR ·N2).

Proof Sketch:. Our main improvement focus on the AG-
GREGATE operations, where we first use the equivalent
form (3) to accelerate the exact computation from O(N4)
to Tmat(N,N,N).

Further, by introducing the iterative sketching (4), with
an appropriate ordering of computation, we can avoid
the time-consuming step of multiplying two N × N ma-
trices. Specifically, by denoting Ai = CGi

AGi
, Aj =

CGjAGj , Hi,j = K̃(l−1,R)(Gi, Gj), we compute Eq. (4),
i.e., A⊤

i S
⊤
i SiHi,jSjS

⊤
j Aj in the following order:

• A⊤
i S

⊤
i and SjAj both takes Tmat(N,N, b) time.

• Si ·Hi,j takes Tmat(b,N,N) time.
• (SiHi,j) · S⊤

j takes Tmat(b,N, b) time.
• (A⊤

i S
⊤
i ) · (SiHi,jSj) takes Tmat(N, b, b) time.

• (A⊤
i S

⊤
i SiHi,jSj) · (SjAj) takes Tmat(N, b,N) time.

Thus, we improve the running time from Tmat(N,N,N) to
Tmat(N,N, b).

Note that we improve the dominating term from N4 to
Tmat(N,N, b). We achieve this improvement using two tech-
niques:

1. We accelerate the multiplication of a Kronecker product
with a vector by decoupling it into two matrix multiplica-
tions of smaller dimensions. In this way we improve the
running time from N4 down to Tmat(N,N,N).

2. We further accelerate the two matrix multiplications by
using two sketching matrices. In this way, we improve the
running time from Tmat(N,N,N) to Tmat(N,N, b).

Error Analysis
In this section, we prove that the introduced error due to the
added sketching in calculating GNTK can be well-bounded,
thus we can prove a similar generalization result.

We first list all the notations and assumptions we used
before proving the generalization bound.

Definition 5 (Approximate GNTK with n data). Let
{(Gi, yi)}ni=1 be the training data and labels, and Gi =
(Vi, Ei) with |Vi| = Ni, and we assume Ni = O(N),



∀i ∈ [n]. For each i ∈ [n] and each u ∈ Vi, let hu ∈ Rd
+ be

the feature vector for u, and we define feature matrix

HGi
:= [hu1

, hu2
, · · · , huNi

] ∈ Rd×Ni
+ .

We also define AGi
∈ RNi×Ni to be the adjacency matrix of

Gi, and SGi
∈ Rbi×Ni to be the sketching matrix used for

Gi.
Let K̃ ∈ Rn×n be the approximate GNTK of a GNN that

has one AGGREGATE operation followed by one COMBINE
operation with one fully-connected layer (L = 1 and R = 1)
and without jumping knowledge. For each l ∈ [L], r ∈ [R],
i, j ∈ [n], let Σ̃(l,r)(Gi, Gj), K̃

(l,r)(Gi, Gj) ∈ RNi×Nj be
defined as in Eq. (4).

We set the scaling parameters used by the GNN for Gi are
cϕ = 2 and cu = (∥[HGiS

⊤
Gi
SGiAGi ]∗,u∥2)−1, for each

u ∈ Vi. We use CGi
∈ RNi×Ni to denote the diagonal

matrix with [CGi
]u,u = cu.

We further define two vectors for each i ∈ [n] and each
u ∈ Vi:

hu := [HGi
AGi

CGi
]∗,u ∈ Rd, (5)

h̃u := [HGi
S⊤
Gi
SGi

AGi
CGi

]∗,u ∈ Rd. (6)

And let T ∈ N+ be a integer. For each t ∈ N+, we define two

matrices H
(t)
, H̃(t) ∈ Rd×n:

H
(t)

:=
[ ∑
u∈V1

Φ(t)(hu), · · · ,
∑
u∈Vn

Φ(t)(hu)
]
∈ Rd×n,

(7)

H̃(t) :=
[ ∑
u∈V1

Φ(t)(h̃u), · · · ,
∑
u∈Vn

Φ(t)(h̃u)
]
∈ Rd×n,

(8)

where we define Φ(t)(·) to be the feature map of the polyno-
mial kernel of degree t s.t.

⟨x, y⟩t = ⟨Φ(t)(x),Φ(t)(y)⟩ ∀x, y ∈ Rd.

Assumption 6. We assume the following properties about
the input graphs, its feature vectors, and its labels.

1. Labels. We assume for all i ∈ [n], the label yi ∈ R we
want to learn satisfies

yi = α1

∑
u∈Vi

⟨hu, β1⟩+
T∑
l=1

α2l

∑
u∈Vi

⟨hu, β2l⟩2l, (9)

Note that α1, α2, · · · , α2T are scalars, β1, β2, · · · , β2T

are vectors in d-dimensional space.
2. Feature vectors and graphs. For each t ∈ {1} ∪

{2l}Tl=1, we assume we have ∥(H(t)
)⊤H

(t)∥F ≤ γt ·
∥(H(t)

)⊤H
(t)∥2, where γ1, γ2, γ4, · · · , γ2T ∈ R. We

also let γ = maxt∈{1}∪{2l}T
l=1

{γt}. Note that γ ≥ 1.
3. Sketching sizes. We assume the sketching sizes {bi}ni=1

satisfy that ∀i, j ∈ [n],

∥AGj
CGj

1[Nj ]∥2∥AGi
CGi

1[Ni]∥2 · ∥H
⊤
Gj

HGi
∥F

≲
min{

√
bi,

√
bj}

γT log3 N
1⊤
[Ni]

C⊤
Gi
A⊤

Gi
H⊤

Gi
HGj

AGj
CGj

1[Nj ],

where 1[Ni] ∈ RNi ,1[Nj ] ∈ RNj are the all one vectors
of size Ni and Nj .

We now provide the generalization bound of our work. We
start with a standard tool.

Theorem 7 ((Bartlett and Mendelson 2002)). Consider n
training data {(Gi, yi)}ni=1 drawn i.i.d. from distribution D
and 1-Lipschitz loss function ℓ : R × R → [0, 1] satisfying
ℓ(y, y) = 0. Then with probability at least 1 − δ, the popu-
lation loss of the GNTK predictor fgntk is upper bounded
by

LD(fgntk) = E
(G,y)∼D

[ℓ(fgntk(G), y)]

≲ (∥y∥2
K̃−1 · tr[K̃])1/2/n+

√
log(1/δ)/n.

Now it remains to bound ∥y∥K̃−1 and tr[K̃]. We have the
following three technical lemmas to address ∥y∥K̃−1 and
tr[K̃]. To start with, we give a close-form reformulation of
our approximate GNTK.

Lemma 8 (Close-form formula of approximate GNTK). Fol-
lowing the notations of Definition 5, we can decompose
K̃ ∈ Rn×n into K̃ = K̃1+ K̃2 ⪰ K̃1, where K̃2 ∈ Rn×n is
a PSD matrix, and K̃1 ∈ Rn×n. K̃1 satisfies the following:

K̃1 =
1

4
(H̃(1))⊤ · H̃(1) +

1

2π

∞∑
l=1

cl · (H̃(2l))⊤ · H̃(2l),

where cl =
(2l−3)!!

(2l−2)!!(2l−1) and equivalently for each i, j ∈ [n],

K̃1(Gi, Gj) ∈ R satisfies the following:

K̃1(Gi, Gj) =
∑
u∈Vi

∑
v∈Vj

⟨h̃u, h̃v⟩ ·
1

2π

(
π − arccos(⟨h̃u, h̃v⟩)

)
,

For each i, j ∈ [n], K̃2(Gi, Gj) ∈ R satisfies the following:

K̃2(Gi, Gj) =
∑
u∈Vi

∑
v∈Vj

⟨h̃u, h̃v⟩

· 1

2π

(
π − arccos(⟨h̃u, h̃v⟩) +

√
1− ⟨h̃u, h̃v⟩2

)
.

Based upon the above characterization, we are ready to
bound y⊤K̃−1y, as a generalization of Theorem 4.2 of (Du
et al. 2019a).

Lemma 9 (Bound on y⊤K̃−1y). Following the notations of
Definition 5 and under the assumptions of Assumption 6, we
have

∥y∥K̃−1 ≤ 4 · |α1|∥β1∥2 +
T∑
l=1

4
√
π(2l − 1) · |α2l|∥β2l∥2.

We provide a high-level proof sketch here. We first com-
pute all the variables in the approximate GNTK formula to
get a close-form formula of K̃. Then combining with the



0.1 0.2 0.3 0.4 0.5
sketching rate

0.10

0.15

0.20

0.25

0.30

0.35
relative error

sketching error
sketching error in theory

0.1 0.2 0.3 0.4 0.5
sketching rate

0.0

0.2

0.4

0.6

0.8

1.0 sketching time
sketching time / original time

Figure 3: Comparison between theoretical and experimental sketching errors (left) and sketching time (right) under different
sketching rates.

assumption on the labels y, we show that ∥y∥K̃−1
1

is upper
bounded by

∥y∥K̃−1
1

≤ (4α2 · β⊤H · (H̃⊤H̃)−1 ·H⊤
β)1/2, (10)

where H, H̃ ∈ Rd×n are two matrices such that ∀i, j ∈ [n],
[H

⊤
H]i,j = 1⊤

Ni
C⊤

Gi
A⊤

Gi
H⊤

Gi
· HGj

AGj
CGj

1Nj
,

and [H̃⊤H̃]i,j = 1⊤
Ni

C⊤
Gi
A⊤

Gi
(S⊤

Gi
SGi

)H⊤
Gi

·
HGj

(S⊤
Gj

SGj
)AGj

CGj
1Nj

. Note by Lemma 3,

we can show that the sketched version H̃⊤H̃ is
a PSD approximation of H

⊤
H in the sense of

(1 − 1
10 )H

⊤
H ⪯ H̃⊤H̃ ⪯ (1 + 1

10 )H
⊤
H. Plugging

into Eq. 10 we can complete the proof.
Lastly, we give a bound on the trace of K̃. We defer the

proof to Appendix.

Lemma 10 (Bound on trace of K̃). Following the notations
of Definition 5 and under the assumptions of Assumption 6,
we have tr[K̃] ≤ 2nN2.

Combining Lemma 9 and Lemma 10 with Theorem 7, we
conclude with the following main generalization theorem:

Theorem 11 (Main generalization theorem). Let c ∈ (0, 1)
denote a fixed constant. Following the notations of Defini-
tion 5, and under the assumptions of Assumption 6, if we
further have the conditions that

4 · α1∥β1∥2 +
T∑
l=1

4
√
π(2l − 1) · α2l∥β2l∥2 = o(n)

and N = o(
√
n), then we can upper bound the generaliza-

tion error of the approximate GNTK by

LD(fgntk) = E
(G,y)∼D

[ℓ(fgntk(G), y)] ≲ O(1/nc).

Above theorem shows that the approximate GNTK corre-
sponds to the vanilla GNN described above is able to, with
polynomial number of samples, learn functions of forms
in (9). Such a guarantee is similar to the result for exact
GNTK (Arora et al. 2019a), indicating our proposed sketch-
ing does not influence the generalization ability of GNTK.

We conduct experiments to validate that the error intro-
duced by matrix sketching is strictly bounded. Following

Lemma 3 , we validate the error difference between matrix
multiplication with and without the sketching method. Specif-
ically, we randomly generate n × n matrices A, G and H .
And matrix multiplication without sketching is calculated by
M = G⊤AH . For the sketching method, we randomly gen-
erate two AMS matrices R and S with size γn×n where γ is
the sketching ratio. And matrix multiplication with sketching
is calculated by Msketch = G⊤R⊤RAS⊤SH. The experi-
mental error matrix is calculated by |M −Msketch|, and the
theoretical error matrix is calculated by the RHS of Lemma 3.
We divide both errors by the original matrix M to show the
relative error. And we show the final mean error by taking
the average over all entries of the error matrices.

Fig. 3 shows the result. We set n = 500, and run exper-
iments under different sketching rates from 0.1 to 0.9. We
run each sketching rate for 100 times and calculate the mean
error. We also show the matrix multiplication time with/with-
out sketching. Experiments show that our sketching error is
always lower than the theoretical bound. When the sketch-
ing rate is high, the error decreases and the running time
increases because the dimension of the matrix is larger. This
experiment validates our Lemma 3, showing that our matrix
sketching method has a strictly bounded error.

Conclusion

Graph Neural Networks (GNNs) have recently become the
most important method for machine learning on graph data
(e.g., protein structures, code AST, social networks), but
training GNNs efficiently is a major challenge. An alternative
method is Graph Neural Tangent Kernel (GNTK). GNTK’s
parameters are solved directly in a single step. This avoids
time-consuming gradient descent. GNTK has thus become
the state-of-the-art method to achieve high training speed
without compromising accuracy. In this paper, we accelerate
the construction of GNTK by two steps: 1) accelerate the
multiplication of a Kronecker product with a vector by de-
coupling it into two matrix multiplications of smaller dimen-
sions; 2) we introduce sketching matrices iteratively to fur-
ther accelerate the multiplication between two matrices. Our
techniques speed up generating kernel matrices for GNTK
and thus improve the end-to-end running time for GNTK
regression.
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